博碩士論文 92322036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.221.12.61
姓名 陳冠華(Kuan-Hua Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 最佳準則法於結構輕量化設計之應用
(Application of Optimality Criteria to Minimum Weight Design of Structures)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是採用兩階段的最佳準則(Optimality Criteria)設計程序來進行結構輕量化問題,限制條件包括位移、應力及挫屈載重因子等限制。進行設計之前,先以Fully Stressed Design(FSD)程序對含有應力限制的問題調整設計變數。兩階段的最佳準則法設計程序是在第一階段採用較大更新因子快速搜尋近似最佳解,並於第二階段藉由降低更新因子以減緩移動步幅,來找出較佳之輕量化設計結果。數個桁架與剛構架的設計例的輕量化設計結果顯示,本研究建議之兩階段設計程序具備快速而穩定收斂的特性,求解品質亦相當接近文獻的結果,甚至更佳。
摘要(英) In this report, the minimum weight design of trusses and rigid frames by using a two-stage design procedure based on the optimality criteria method is studied. The behavior constraints considered in this study include the constraints on displacement, stress, and buckling load factor. In this study, the independent variables of a structure with stress constraints are adjusted by using the fully stressed design procedure first. Then, the variables are designed by using the two-stage design procedure. In the two-stage design procedure, a larger exponent of the recursive relation is used to search for a near optimal solution first, and a smaller exponent is then used in the second stage to slow down the moving velocity and to fine tune the solution quality. Several trusses and rigid frames studied in the literature are used to demonstrate the efficiency and the solution quality of the proposed design procedures. Comparative results show that the proposed optimality criteria method can efficiently find good quality solutions for the designed structures.
關鍵字(中) ★ 最佳準則法
★ 輕量化設計
★ 兩階段設計程序
★ 位移限制
★ 應力限制
★ 挫屈載重因子限制
關鍵字(英) ★ optimality criteria method
★ minimum weight design
★ two-stage design procedure
★ displacement constraints
★ stress constraints
★ buckling load factor constraint
論文目次 摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 5
1.3 研究方法與內容 8
第二章 最佳準則法 10
2.1 輕量化設計問題之數學模式 10
2.2 OC法理論回顧 11
2.3 終止條件 14
2.4 敏感度分析(SENSITIVITY ANALYSIS) 15
2.4.1 位移敏感度 15
2.4.2 應力敏感度 16
2.4.3 挫屈敏感度 19
2.5 FULLY STRESSED DESIGN(FSD) 22
2.6 比例縮放(UNIFORM SCALING OPERATION) 23
2.7 本文的演算程序 24
第三章 更新因子值與FSD之影響 26
3.1 前言 26
3.2 更新因子修正 29
3.3 測試算例 31
3.3.1 10桿平面桁架 31
3.3.2 50桿平面桁架 36
3.4 FSD之影響 41
3.5 討論 42
第四章 數值算例與討論 44
4.1 簡介 44
4.2 數值算例 45
4.2.1 2桿平面桁架 45
4.2.2 4桿空間桁架 47
4.2.3 4桿空間桁架 49
4.2.4 10桿平面桁架 52
4.2.5 22桿空間桁架 55
4.2.6 25桿空間桁架 58
4.2.7 72桿空間桁架 62
4.2.8 200桿平面桁架 66
4.2.9 12桿平面構架 72
4.2.10 15桿平面桁架 79
4.3 討論 82
第五章 結論與建議 84
5.1 結論與建議 84
5.2 未來研究方向 86
參考文獻 88
參考文獻 [1] Maxwell, J.C., Scientific Papers, Vol.2, pp. 175(1869).
[2] Michell, A.G.M., “The limits of economy of material in framed structures,” Phil. Mag. (series 6), Vol. 8, pp.589-597 (1904).
[3] Svanberg, K., “Optimization of Geometry in Truss Design,” Computer Methods in Applied Mechanics and Engineering, Vol. 28, pp. 63-80(1981).
[4] Kirsch, U., Structural optimizations, fundamentals and applications, Springer-Verlag, Heidelbrg (1993).
[5] Gallagher, R.H., “Fully-stressed design,” In Optimum Structural Design, Theory and Applications, Chapter 3, R. H. Gallagher and O.C. Zienkiewicz(Eds.) John Wiley and Sons (1973).
[6] Venkayya, V. B., “Design of Optimum Structure,” Computers and Structures, Vol. 1, pp. 265-309 (1971).
[7] Khot, N. S., Venkayya, V. B., and Berke, L., “Optimum Design of Composite Structures with Stress and Displacement Constraints,” AIAA 13th Aerospace Sciences Meeting, Pasadena, California, USA, Vol. 2, No. 28, pp.75-141 (1975).
[8] Gellatly, R. A., and Berke, L., “Optimal Structural Design,” Air Force Flight Dynamics Lab, Report No. AFFDL-TR-70-165 (1971).
[9] Venkayya, V. B., Khot, N. S., and Berke, L., “Application of Optimality Criteria Approaches on Automated Design of Large Practical Structures,” 2nd Symposium on Structural Optimization, pp. 3.1-3.19 (1973).
[10] Taig, I. C., and Kerr, R. I., “Optimization of Aircraft Structures with Multiple Stiffness Requirements,” Proc. 2nd AGARD Symp. Struct. Opt., AGARD CP-123, Paper 16, pp. 16.1-16.4 (1973).
[11] Khot, N. S., Venkayya, V. B., and Berke, L., “Optimum Structural Design with Stability Constraints,” International Journal for Numerical Methods In Engineering, Vol. 10, pp. 1097-1114 (1976).
[12] Dobbs, M. W., and Nelson, R. B., “Application of Optimality Criteria to Automated Structural Design,” AIAA Journal, Vol. 14, pp. 1436-1443 (1976).
[13] Rizzi, P., “Optimization of Multi-constrained Structures Based on Optimality Criteria,” AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference, King of Prussia (1976).
[14] Khan, M. R., Willmert K. D., and Thornton, W. A., “An Optomality Criterion Method for Large-Scale Structures,” AIAA Journal, Vol. 17, No. 7, pp. 753-761 (1979).
[15] Lin, C. C., and Liu, I. W., “Optimal Design Based on Optimality Criterion for Frame Structures Including Buckling Constraint,” Computers and Structures, Vol. 31, No. 4, pp. 535-544 (1989).
[16] Lin, C. C., and Liu, I. W., “Optimal design for plate structures with buckling constraints,” AIAA Journal, Vol. 28, No. 5, pp. 951-953 (1990).
[17] Arora, J. S., Introduction to Optimum Design, McGraw-Hill International Editions (1989)
[18] Kirsch, U., Optimum Structural Design: Concepts, Methods, and Applications, New York: McGraw-hill (1981).
[19] Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-HILL Book Company, New York (1979).
[20] Zacharopoulos, A. Willmert, K. D., and Khan, M. R., “An Optimality Criterion Method for Structures with Stress, Displacement and Frequency Constraints,” Computers and Structures, Vol. 19, No. 4, pp. 621-629 (1984).
[21] Schmit, L. A., and Miura, H., “Approximation Concepts for Efficient Structural Synthesis,” NASA CR-2552 (1976).
[22] Schmit, L. A., and Farshi, B., “Some Approximation Concepts for Structural Synthesis,” AIAA Journal, Vol. 12, pp. 692-699 (1974).
[23] Kiusalas, L., and Reddy, G. B., “DESAP2-a Structural Design Program With Stress and Buckling Constraints, Vol. Ⅱ: sample problems,” NASA CR-2798 (1977).
[24] Sedaghati, R., and Tabarrok, B., “Optimum design of truss structures undergoing large deflections subject to a system stability constraint,” International Journal for Numerical Methods in Engineering, Vol. 48, Issue 3, pp. 421-434 (2000).
[25] Sheu, C. Y., and Schmit, L. A., “Minimum Weight Design of Elastic Redundant Trusses under Multiple Static Load Conditions,” AIAA Journal, Vol. 10, No. 2, pp. 155-162(1972).
[26] Berke, L., and Khot, N. S., “Use of Optimality Criteria Methods for Large Scale Systems,” AGARD Lecture Series No. 70 on Structural Optimization, AGARD-LS-70, pp. 1-29(1974).
[27] 謝元裕,「結構穩定學」,文笙書局,台北市 (1999)。
[28] Austrell, P. E., Dahlblom, O., and Lindemann, J., “CALFEM: A finite element toolbox, Version 3.4,” Structural Mechanics (2004).
[29] Khan, M. R., “Optimality Criterion Techniques Applied to Frames Having General Cross-Sectional Relationships,” AIAA Journal, Vol. 22, No. 5, pp. 669-676 (1984).
指導教授 莊德興(Der-Shin Juang) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明