博碩士論文 945201056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.226.186.58
姓名 黃益韋(Yi-wei huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 奈米晶粒矽 P-I-N 太陽能電池
(Nanocrystalline Si P-I-N Solar Cell)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要目的是研製奈米晶粒矽 (nc-Si:H) p-i-n 太陽能電池。首先是利用四種不同的製程方法製備所要的nc-Si:H薄膜: (1)在PECVD系統的陰極加裝不銹鋼網; (2) 先在基板上成長一層a-Si:H緩衝層,再沉積nc-Si:H薄膜; (3) 先使用氫電漿處理a-Si:H緩衝層後,再沉積nc-Si:H薄膜; (4) 用氫氣稀釋源氣體SiH4的方式沉積nc-Si:H薄膜。我們也使用微拉曼光譜儀 (micro-Raman spectroscopy)、X光繞射儀 (XRD) 及場發射掃描式電子顯微鏡(FE-SEM) 等儀器分析各nc-Si:H薄膜的結晶度。測量結果顯示,先在基板上沉積一層緩衝層,再用氫電漿處理緩衝層的表面,而後配合適當的SiH4濃度,可沉積出較佳的矽奈米晶粒 (nc-Si:H) 薄膜。
再者,我們也利用上述較佳的製程參數,製備了二種不同結構的太陽能電池並量測其短路電流、開路電壓、填充因子及轉換效率。第一個元件的結構是Al / n-a-Si:H / i-a-Si:H / p-a-SiC:H / ITO /glass,另一個元件的結構為Al / n-a-Si:H / i-nc-Si:H / i-a-Si:H ( buffer layer )/ i-a-Si:H / p-a-SiC:H / ITO /glass。實驗結果顯示,在AM1.5之下,前者有比較好的轉換效率 (1.08%) ,而後者具略高的填充因子 (0.278)。
摘要(英) In this thesis, the fabrication process and performance of the nanocrystalline silicon (nc-Si) p-i-n solar cells was studied. Firstly, the nc-Si:H films were deposited with a PECVD (plasma-enhanced chemical vapor deposition) system, by employing four different process techniques: (1) attaching a stainless steel mesh to cathode of the PECVD system, (2) an a-Si:H buffer layer was deposited on the substrate before growing the nc-Si:H film, (3) applying additional in-situ H2-plasma treatment on the a-Si:H buffer layer before growing the nc-Si:H film, and (4) the SiH4 reaction gas was diluted in H2 ,and the crystallinity of the obtain films were compared. The nc-Si:H films were characterized with micro-Raman spectroscopy, X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). From the measurment results, it was concluded that depositing an a-Si:H buffer layer and then applying in-situ H2-plasma treatment on a-Si:H buffer layer could result in the better crystallinity of the grown nc-Si:H film.
Then, two different structures of nc-Si:H p-i-n solar cell were fabricated and their characteristics such as the short-circuit current ( Isc ), open-circuit voltage ( Voc ),fill factor ( FF )and efficiency ( eff. ) were measured. For the device structures, one was Al / n-a-Si:H / i-a-Si:H / p-a-SiC:H / ITO (indium tin oxide) /glass and the other was Al / n-a-Si:H / i-nc-Si:H / i-a-Si:H ( buffer layer )/ i-a-Si:H / p-a-SiC:H / ITO /glass. The measured results showed that the former one had a higher efficiency (~ 1.08%) and the later one had a little higher FF (~ 0.278) under AM1.5.
關鍵字(中) ★ 太陽能電池
★ 奈米晶粒矽
關鍵字(英) ★ Nanocrystalline Si
★ Solar Cell
論文目次 Table Captions…………………..……………………………………………….Ⅲ
Figure Captions…………………………..…………………………...….……...Ⅳ
Chapter 1 INTRODUCTION………..…………….……………1
Chapter 2 DEVICE OPERATION PRINCIPLES
2.1 Basic Principles of Solar Cell……………………………………….3
2.2 Fundamental Parameters of Solar Cell …………………………4
Chapter 3 EXPERIMENTAL PROCEDURES
3.1 Fabrication of nc–Si :H Film………………………………………8
3.1.1 Effect of a-Si:H buffer layer…………………………..……...…..9
3.1.2 Effect of stainless steel mesh…...…………………..…………….9
3.1.3 Effect of H2-plasma treatment on a-Si:H buffer layer…...…….9
3.1.4 Effect of hydrogen dilution…………………………..………....10
3.2 Device Fabrication…...……………………………………………..10
3.3 Measurement Techniques …...……………………………………11
3.3.1 Micro-Raman spectroscopy ……………………………………11
3.3.2 X-ray diffraction ( XRD ) ……………………………………...13
3.3.3 Field-emission scanning electron microscope ( FE - SEM ) …13
3.3.4 Solar Simulator…........................................................................13
Chapter 4 RESULTS AND DISCUSSION
4.1 Characterizations of nc-Si:H Films............................................21
4.1.1 Effect of a-Si:H buffer layer.......................................................21
4.1.2 Effect of stainless steel mesh .....................................................22
4.1.3 Effect of H2-plasma treatment on a-Si:H buffer layer............24
4.1.4 Effect of hydrogen dilution........................................................24
4.2 Characterizations of Solar Cells.................................................25
Chapter 5 CONCLUSION…………………………………..37
REFERENCES………………………………………………………...38
參考文獻 [1] S. Veprek and V. Marecek, “The preparation of thin layers of Ge and
Si by chemical hydrogen plasma transport,” Solid State Electron., Vol. 11, pp. 683-684 (1968).
[2] C. I-Chun and W. Sigurd, “High hole and electron field effect mobility in Nanocrystalline silicon deposited at 150 ℃,” Thin Solid Films, Vol. 427, pp. 56-59 (2003).
[3] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room temperature nanocrystalline silicon single-electron transistors,” Journal of Applied Physics, Vol. 94, pp. 633-637 (2003)
[4] Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si:
H film and its application to solar cells,” Jpn. J. Appl. Phys., Part 2, Vol. 21, pp. L586 (1986)
[5] J. Nelson, “The physics of solar cells,” Imperial College Press, pp. 249 (2003).
[6] 盧慶儒, “技術洞察-無所不在的發電技術 太陽能電池系列報導,” DIGITIMES專欄,(2006)
[7] Y. Yamamoto, S. Suganuma, M. Ito, M. Hori, and T. Goto, “Effects of dilution gases on Si atoms and SiHx + (x = 0–3) ions in electron cyclotron resonance SiH4 plasmas,” Jpn. J. Appl. Phys., Part 1, Vol. 36, pp. 4664 (1997)
[8] J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? ,” Appl. Phys. Lett. Vol. 65, pp.860 (1994)
[9] W. Du, X. Liao, X. Yang, H. Povolny, X. Xiang, X. Deng, and K. Sun, “Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n-i-p solar cells,” Solar Energy Materials & Solar Cells, Vol.90, pp 1098-1104 (2006)
[10] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C.,2005
[11] 莊嘉琛, “太陽能工程. 太陽電池篇,” 全華圖書, (1997).
[12] D. Das, M. Jana, K. Barua, S. Chattopashyay, and L. Chyong, “Correlation of electrical, thermal and structure properties of microcrystalline silicon thin films ,” Jpn. J. Appl. Phys., Part 2 Vol.41, pp. L229-L232 (2002)
.
[13] T. Kaneko, M. Wakagi, O. Ken-Ichi, and T. Minemura, “Change in crystalline morphologies of polycrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition SiF4+H2 gas mixture at 350℃,” Appl. Phys. Lett., Vol. 64, pp.1865-1867 (1994)
[14] P. Alpuim, V. Chu, and J.P. Conde, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition,” J. Appl. Phys., Vol.86, pp.3812-3821 (1999)
[15] G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena, and C. Minarini, “Optical, structural and electrical properties of μc-Si:H films deposited by SiH4+H2 ,” Materials Science and Engineering B, Vol.101, pp.236-241 (2003)
[16] V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys., Vol.90, pp.3276-3279 (2001)
[17] H. Yuliang, Y. Chenzhong, C. Guangxu, W. Luchun, and L. Xiangna, “The structure and properties of nanosize crystalline silicon films,” J. Appl. Phys., Vol.75, pp.797-803 (1994)
[18] C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin, “Preferential coalescence of nanocrystalline silicon on different film substrates,” Journal of Non-crystalline Solids, Vol.352, pp.44-50 (2006)
[19] M. D. Shieh, T. R. Yew, and C. Lee, “The kinetics of very low temperature (~300 ℃) silicon epitaxial growth by confined plasma enhanced chemical vapor depotsition,” J. Electrochem. Soc., Vol. 141, pp. 3584-3587 (1994)
[20] Ti. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C.,2006
[21] T. Arai and H. Shirai, “Study of effect of SiH4 gas heating during growth of hydrogenated microcrystalline silicon on SiO2 by plasma-enhanced chemical-vapor depositon,” J. Appl. Phys. Vol.80, pp.4976-4983 (1996)
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明