博碩士論文 945201078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:13.59.205.182
姓名 林建存(Jian-cun Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於增益與相位邊限規格之控制器設計
(Design of Controllers Based on Gain andPhase Margin Specifications)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們都知道當系統有適當的相位邊限以及增益邊限的話,將會使系統有良
好的強健性,因此在本研究中,我們主要是將探討如何以相位邊限以及增益邊
限這兩個頻域規格來設計控制器,而其中所探討的控制器類型包含了比例-微
分控制器(Proportional-Derivative Controller) 、比例- 積分控制器
(Proportional-Integral Controller) 、比例- 積分- 微分控制器
(Proportional-Integral-Derivative Controller)、以及相位領先或落後補
償器(Phase Lead or Lag Compensator)這幾種形式。
由於整個控制器的設計流程中,為了要使得整個系統同時達到我們所要求
的相位邊限以及增益邊限的規格將會是非常複雜且需要不斷以嘗試錯誤(try
and error)的方式來設計,因此我們利用增益-相位邊限測試方法(Gain-Phase
Margin Tester Method)來實現。增益-相位邊限測試方法是一種非常快速且直
覺的控制器設計方法,可以將控制器的解轉換成二維平面,只要讀取圖上的值
即可找出解來。而在一些情況下,控制器的解可能會超過二維平面,因此我們
利用穩態誤差(steady-state error)的條件限制,進而不增加控制器設計上的
複雜度。最後我們也利用幾個簡單的例子來作模擬及測試。
摘要(英) In control theorems, gain margin and phase margin are important specifications
in the frequency domain for the analysis and design of practical control systems and
have served as important measures of robustness analysis. In this thesis, we will
discuss how to design of controllers to satisfy required gain and phase margin
specifications, and the controllers are proportional-integral (PI) controller,
proportional-derivative (PD) controller, proportional-integral-derivative (PID)
controller, and phase lead or lag compensator.
In the procedure of controller design, it is very hard and complicated to let the
system achieve our required gain and phase margin specifications, simultaneously.
So we utilize gain-phase margin tester method to achieve this goal. The gain-phase
margin tester method can transform the solutions of the controller into
two-dimension surface, and we can find solutions on the figure. In some cases, the
solutions of the controller will exceed two-dimension surface, so we utilize the
condition of steady-state error to constrain the dimension of solutions, and avoid to
increase the complexity of controller design. Finally, the effectiveness of the
method is demonstrated by examples.
關鍵字(中) ★ 控制器設計
★ 補償器設計
★ 相位邊限
★ 增益邊限
關鍵字(英) ★ gain margin
★ controller design
★ compensator design
★ phase margin
論文目次 Chapter 1 Introduction .........................1
1-1 Motivation .........................1
1-2 Organization of this thesis .........................2
Chapter 2 Fundamental Concept and Research Method .........................3
2-1 Gain margin and Phase margin .........................3
2-1-1 Gain margin .........................3
2-1-2 Phase margin .........................6
2-2 Steady-state error .........................9
2-3 Kharitonov theorem [7, 8] .........................14
Chapter 3 Main Method and Simulation Results .........................16
3-1 PI Controller .........................17
3-2 PI controller with uncertain plant .........................25
3-3 PD controller: .........................32
3-4 PID controller .........................36
3-5 Phase Lead or Lag compensator: .........................43
Chapter 4 Conclusions .........................50
Reference......................... 51
參考文獻 [1] B. C. Kuo, “Automatic Control Systems”, Addison-Wesley, 8th ed., 2002.
[2] C. H. Chang, and K. W. Han, “Gain Margin and Phase Margin Analysis of a Unclear Reactor Control System with Multiple Transport Lags”, IEEE Transactions on Nuclear Science., vol. 36, no. 4, pp. 1418-1425, 1989.
[3] G. F. Franklin, J. D. Powell, and A. E. Naeini, “Feedback control of dynamic systems”, Addison-Wesley, 3rd ed., 1994.
[4] H. W. Fung, Q. G. Wang, and T. H. Lee, “PI tuning in Terms of Gain and Phase Margins,” Automatica, vol. 34, No. 9, pp. 1145-1149, 1998.
[5] J. H. Lee, “A New Phase-Lead Design Method Using the Root Locus Diagrams”, IEEE Trans. On Automatic Control, vol. 50, No. 11, pp. 1887-1891, 2005.
[6] K. S. Yeung, K. Chen, ”A Non-Trial-and-Error Method for Lag-Lead Compensator Design,” IEEE Transaction on Education, Vol. 41, pp.76-80, Feb. 1998
[7] K. S. Yeung, and S. S. Wang, “A simple proof of Kharitonov's theorem”, IEEE Trans. Automat. Control, vol. 32, no. 9, pp. 822-823, 1987.
[8] N. K. Bose, and Y. Q. Shi, “A Simple General Proof of Kharitonov’s Generalized Stability Criterion”, IEEE Transactions on Circuits and Systems, vol. 34, no. 8, pp. 1233-1237, 1987.
[9] N. Tan, I. Kaya, C Yeroglu, and DP. Atherton , “Computation of stabilizing PI and PID controllers using the stability boundary locus”, Energy Conversion and Management, Vol.47, No.18-19, pp. 3045-3058, 2006
[10] Q. G. Wang, H. W. Fung, and Y. Zhang, "PID Tuning with Exact Gain and Phase Margins," ISA Transactions, Vol. 38, pp. 234-249, 1999.
[11] Q. G. Wang, Z. Ye, and C. C. Hang, “Tuning of phase-lead compensator for exact gain and phase margins”, Automatica, vol. 42, No. 2, pp. 349-352, 2006
[12] S. Sujoldzic and J. Watkins, “Stabilization of an Arbitrary Order Transfer Function with Time Delay using PI and PD controllers,” Proceedings of the American Control Conference, Minneapolis, MN, 14-16 June 2006 Page(s):6
[13] S. Y. Chu and C. C. Teng, “Tuning of PID controllers Based on Gain and Phase Margin Specifications Using Fuzzy Neural Network,” Fuzzy sets and Systems, 101, pp. 21-30, 1999.
[14] W. K. Ho, C.C. Hang, and L.S. Cao, “Tuning of PID Controllers Based on Gain and Phase Margin Specifications”, Automatica, vol. 31, no. 3, pp. 497-502, 1995
[15] W. Tang, Q. G. Wang, Z. Ye, Z. Zhang, “PID tuning for dominant poles and phase margin”, Asian Journal of Control, 2006
[16] Y. J. Huang and Y. J. Wang, “Robust PID controller design for non-minimum phase time delay systems”, ISA Transactions., vol. 40, no. 1, pp. 31-39, 2001.
[17] Y. J. Huang and Y. J. Wang, “Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem”, ISA Transactions., vol. 39, no. 4, pp. 419-431, 2000.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2007-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明