博碩士論文 945201085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.144.252.58
姓名 蔡育廷(Yu-Ting Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 非接觸式生物組織電導率成像系統
(The Contactless Imaging System for the Conductivity of Biological Tissues)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從生物組織電導率影像被發表以來,電導率影像被視為一種非侵入式監測、可長時間監測、無輻射性傷害、具攜帶性以及成本低廉的醫學影像技術。本論文設計並製作的高性能非接觸式生物組織電導率成像系統利用磁感應原理以非接觸式的方式來成像,非接觸式電導率成像具有成像機構簡單、高安全性、高可靠性…等優點。成像系統包含非接觸式電導率感測器、成像平台、訊號產生器、鎖相放大器以及資料擷取/控制界面卡。在實驗中,吾人以靈敏度與空間解析度兩項指標來評估感測器性能,並對多種生物組織進行一維空間剖面掃描以及二維空間成像來評估系統實用性。實驗結果顯示本系統之感測器具有高靈敏度與高空間解析度,而且二維空間的生物組織電導率成像結果,可以成功的辨識生物組織中電導率相異的部分,比起國內外相關研究的成像結果均有所提升。最後,本論文提出以可重組態儀器架構將本成像系統整合成可獨立運作的單一系統,降低各個分散儀器間接線過長與過多所產生的雜訊以期提升成像品質,並且改善實驗操作之方便性以期縮短成像時間。整合後的成像系統除了驗證此架構之可行性外,也改善本系統之穩定性與操作性。
摘要(英) Since the first biological conductivity image was proposed, the conductivity imaging has been regarded as a functional imaging technique in the medical field. The conductivity imaging provides many advantages in biomedical applications, such as non-invasion, long-term monitoring, radiation-free, portable, and lower cost. In this thesis, a high performance non-contact imaging system for the conductivity of biological tissues was proposed. The non-contact method has many advantages, such as simple mechanism, high safety, and reliability. The proposed imaging system includes contactless conductivity sensor, imaging platform, function generator, lock-in amplifier, and data acquisition/control card. The sensitivity and one-dimension spatial resolution was applied to evaluate the performance of the proposed sensor. The imaging results show the proposed sensor has high sensitivity and spatial resolution, which provides the feasibility of distinguishing the conductivity distribution on interesting region of biological tissues. In the end, the reconfigurable instrument scheme was proposed to improve the imaging system. The scheme which reduces noise resulted from wirings between instruments could improve the imaging quality and simplify the experimental procedures. The experiment results of modified imaging system show the improvement of the system stability and convenience.
關鍵字(中) ★ 電導率
★ 磁感應
★ 生物影像
★ 轉向差動接收線圈
★ 可重組態儀器
關鍵字(英) ★ biological imaging
★ magnetic induction
★ conductivity
★ differential receiver coil alignment
★ reconfigurable instrument
論文目次 中文摘要
英文摘要
誌謝
目錄 I
圖目錄 III
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文組織 4
第二章 非接觸式生物組織電導率測量原理 6
2.1 電解質導電特性 6
2.2 生物組織導電特性 7
2.3 生物組織等效電路模型 8
2.4 生物組織電導率 9
2.5 影響生物組織電導率測量的因素 10
2.6 非接觸式電導率測量原理 11
第三章 非接觸式生物組織電導率成像系統 16
3.1 非接觸式電導率感測器 16
3.2 激勵訊號輸入與感測訊號接收 20
3.3 成像平台 21
3.3.1 待測物載具 22
3.3.2 感測器載具 23
3.3.3 傳動裝置 24
3.3.4 步進馬達 25
3.3.5 步進馬達驅動器 26
3.4 訊號產生器 28
3.5 鎖相放大器 32
3.6 訊號擷取/控制界面卡 38
第四章 實驗與討論 41
4.1 靈敏度實驗 41
4.2 一維空間解析度實驗 43
4.3 生物組織一維空間掃描實驗 46
4.4 線性內插演算法提升成像品質實驗 49
4.5 食鹽水假體二維空間成像實驗 50
4.6 生物組織二維空間成像實驗 54
第五章 成像系統改良 59
5.1 成像系統改良方法 59
5.1.1 訊號產生器 61
5.1.2 訊號擷取界面 63
5.1.3 移動平均濾波器 64
5.1.4 RS-232控制器 65
5.2 成像系統改良後之實驗與討論 66
第六章 結論與展望 68
6.1 結論 68
6.2 展望 69
附錄A Delta-Sigma DAC設計方法 70
A.1 Delta-Sigma調變器原理 70
A.2 高階Delta-Sigma調變器設計方法 75
A.3 使用MATLAB/Simulink設計三階Delta-Sigma調變器 78
A.4 FPGA實現與實驗結果 80
參考文獻 83
著作目錄 87
參考文獻 [1] I.A. Bakar, K. Shida, “New Contactless Eddy Current Sensor for the Measurement of Concentration of Electrolyte Solution,” Proceedings of the 36th SICE Annual Conference, PP. 937-940, 1997.
[2] S. Yamazaki, H. Nakane, and A. Tanaka, “Basic Analysis of a Metal Detector,” IEEE Transactions on Instrumentation and Measurement, Vol. 51, Iss. 4, PP. 810-814, 2002.
[3] J.D. Crowley and T.A. Rabson, “Contactless Method of Measuring Resistivity,” Review of Scientific Instruments, Vol. 47, PP. 712-715, 1976.
[4] H.C. Yang, “The Design and Applications of Eddy-Current Nondestructive Inspection System,” Ph.D. Thesis, Department of Electrical Engineering, National Cheng Kung University, Taiwan, 2003.
[5] Y.C. Chuang, “Development of Eddy-current Displacement Sensor and Research on Multi-degrees Displacement Sensing System,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, Taiwan, 2002.
[6] P.P. Tarjan and R. McFee, “Electrodeless Measurements of the Effective Resistivity of the Human Torso and Head by Magnetic Induction,” IEEE Transactions on Biomedical Engineering, Vol. 15, PP. 266-278, 1968.
[7] S. Watson, A. Morris, R. J. Williams, H. Griffiths, and W. Gough, “A Primary Field Compensation Scheme for Planar Array Magnetic Induction Tomography,” Physiological Measurement, No. 1, PP. 271-279, 2004.
[8] T.C. Hsieh, C.N. Huang, F.M. Yu, F.W. Chang, and H.Y. Chung, “The Primary Field Compensation for Contactless Impedance Measurement,” 2005 Biomedical Engineering Society Annual Symposium, Taiwan, PP. 78, 2005.
[9] J.G. Webster, Electrical Impedance Tomography, Institute of Physics, ISBN: 0852743041, 1990.
[10] R.P. Henderson and J.G. Webster, “An Impedance Camera for Spatially Specific Measurements of the Thorax,” IEEE Transactions on Biomedical Engineering, Vol. 25, Iss. 3, PP. 250-254, 1978.
[11] B.H. Brown and D.C. Barber, “Applied Potential Tomography: a New in vivo Medical Imaging Technique,” Clinical Physics and Physiology Measurement, Vol. 4, No. 1, 1982.
[12] S. Al-Zeibak and N. Saunder, “A Feasibility Study of in vivo Electromagnetic Imaging,” Physics in Medicine and Biology, Vol. 38, Iss. 1, PP. 151-160, 1993.
[13] N.G. Gencer and M.N. Tek, “Imaging Tissue Conductivity via Contactless Measurements: A Feasibility Study,” TUBITAK Elektrik Journal, Vol. 6, No. 3, PP. 183-200, 1998.
[14] B.U. Karbeyaz and N.G. Gencer, “Electrical Conductivity Imaging via Contactless Measurements: An Experimental Study,” IEEE Transactions on Medical Imaging, Vol. 22, No. 5, 2003.
[15] S. Grimnes and O.G. Martinsen, Bioimpedance and Bioelectricity Basics, Academic Press, ISBN: 0123032601, 1981.
[16] A.J. Fitzgerald, D.S. Holder, L. Eadie, C. Hare, and R.H. Bayford, “A Comparison of Techniques to Optimize Measurement of Voltage Changes in Electrical Impedance Tomography by Minimizing Phase Shift Errors,” IEEE Transactions on Medical Imaging, Vol. 21, No. 6, PP. 668-675, 2002.
[17] T.J. Faes, H.A. van der Meij, J.C. de Munck, and R.M. Heethaar, “The Electric Resistivity of Human Tissues (100 Hz-10 MHz): a Meta-analysis of Review Studies,” Physiological Measurement, Vol. 20, No. 4, 1999.
[18] S. Gabriel, R.W. Lau, and C. Gabriel, “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz,” Physics in Medicine and Biology, Vol. 41, Iss. 11, PP. 2251-2269, 1996.
[19] D.C. Barber and B.H. Brown, “Applied Potential Tomography,” Journal of Physics E: Scientific Instrument, Vol. 17, PP. 723-733, 1984.
[20] E. Zheng, S. Shao, and J.G. Webster, “Impedance of Skeletal Muscle from 1Hz to 1MHz,” IEEE Transactions on Biomedical Engineering, Vol. 31, Iss. 6, PP. 477-481, 1984.
[21] H.C. Burger and R. Dongen, “Specific Electrical Resistance of Body Tissue,” Physics in Medicine and Biology, Vol. 5, PP. 431-447, 1961.
[22] D.K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, ISBN: 0201128195, 1989.
[23] D.J. Hagemaier, Fundamentals of Eddy Current Testing, The American Society for Nondestructive Testing, ISBN: 0931403901, 1990.
[24] C.H. Riedel, M. Keppelen, S. Nani, R.D. Merges, and O. Ssel, “Planar system for Magnetic Induction Conductivity Measurement Using a Sensor Matrix,” Physiological Measurement, Vol. 25, Iss. 1, PP. 403-411, 2004.
[25] N.G. Gencer, M. Kuzuoglu, and Y.Z. Ider, “Electrical Impedance Tomography Using Induced Currents,” IEEE Transactions on Medical Imaging, Vol. 13, No. 2, PP. 338-350, 1994.
[26] W.H. Yang, “Application of Contactless Impedance Image in Biologic Tissue,” Master Thesis, Department of Electrical Engineering, National Central University, Taiwan, 2005.
[27] T.C. Hsieh, “The Design of Impedance Sensor for Contactless Measurement Systems,” Master Thesis, Department of Electrical Engineering, National Central University, Taiwan, 2006.
[28] M.L. Meade, “Advances in Lock-in Amlifier,” Journal of Physics E: Scientific Instrument, Vol. 15, 1982.
[29] M. Min, O. Martens, and T. Parve, “Lock-in Measurement of Bio-impedance Variationss,” Measurement, Vol. 27, PP.21-28, 2000.
[30] J.H. Scofield, “A Frequency-Domain Description of a Lock-in Amplifier,” Americal Journal of Physics, Vol. 62, NO. 2, PP. 129-133, 1994.
[31] G.R. Tsai, M.C. Lin, Y.T. Tsai, Y.R. Lu, and Y.C. Lin, “Software-Defined Instrumentation Technique by Hardware Kernel Based on FPGA with Embedded Processor”, 2003 International Conference on Informatics Cybernetics and Systems, PP. 90-95, 2003.
[32] G.R. Tsai, M.C. Lin, Y.T. Tsai, and S.X. Zhu, “Designing a Digital IP for Real-Time and Wide-Band Spectrum Analyzer,” Workshop on Consumer Electronics and Signal Processing, PP. 243-247, 2004.
[33] J.W. Hsieh, G.R. Tsai, and M.C. Lin, “Using FPGA to Implement a N-channel Arbitrary Waveform Generator with Various Add-on Function,” IEEE International Conference on Field-Programmable Technology, PP. 296-298, 2003.
[34] G.R. Tsai, M.C. Lin, W.Z. Tung, K.C. Chung, and S.Y. Chan, “Wide-Band and Precisely Measurement Method of Phase Detector Based on FPGA with Embedded Processor”, 2003 International Conference on Informatics Cybernetics and Systems, PP. 102-106, 2003.
[35] G.R. Tsai, M.C. Lin, W.Z. Tung, K.C. Chuang, and S.Y. Chan, “An Universal Debugger for Embedded SoPC Development,” 2003 International Conference on Informatics, Cybernetics and Systems, PP. 84-89, 2003.
[36] H.T. Nicholas and H. Samueli, “An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator,” 41st Annual Symposium on Frequency Control, PP. 495-502, 1987.
[37] G.R. Tsai and M.C. Lin, “High Speed Signal Sampler by Multiple-Path Algorithm,” IEEE TENCON, Vol. A, PP. 29-31, 2004.
[38] R. Schreier and G.C. Temes, Understanding Delta-Sigma Data Converters, Wiely-IEEE Press, ISBN: 0471465852, 2004.
[39] S.H. Yu and J.S. Hu, “Sigma-Delta Modulators Operated In Optimization Mode," IEEE Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 1, PP. 1080-1083, 2004.
[40] H. Inos, Y. Yasuda, and J. Marakami, “A Telemetering System by Code Modulation, Delta-Sigma Modulation,” IRE Transactions on Space Electronics and Telemetry, Vol. SET-8, PP. 204, 1962.
[41] M. Kozak and I. Kale, Oversampled Delta-Sigma Modulators, Kluwer Academic Publishers, ISBN: 1402074204, 2003.
[42] R.W. Stewart and E. Pfann, “Oversampling and Sigma-Delta Strategies for Data Conversion,” Electronics & Commulation Engineering Journal, Vol. 10, Iss. 1, PP. 37-47, 1998.
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2007-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明