以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:46 、訪客IP:3.145.112.23
姓名 蔡尚儒(Shang-ju Tsai) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 無線區域網路之雙頻濾波器與天線設計
(Design of dual-band filters and antennas for WLAN applications)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文中將介紹涵蓋無線區域網路頻帶(ISM 2.4-2.5GHz和UNII 5.15-5.85GHz)的雙頻濾波器與天線。在文獻上,兩頻帶頻寬差異很大的濾波器設計存在三個主要的問題:兩個頻帶插入損耗(insertion loss, )通常過大(超過3dB)、阻抗匹配普遍不佳(僅-10dB左右)、與選擇(selectivity)的不佳。本文中將針對以上問題提出兩種新的改善方法。利用不對稱饋入3條耦合線的寬頻特性,結合雙重行為共振器(Dual-Behavior Resonator, DBR)來控制兩個頻帶的中心頻率與不同的頻寬,再加入缺陷接地結構(Defected Ground Structure, DGS)而使匹配改善。文中一共提出二階的不對稱分枝與指叉分枝濾波器兩種結構,使用的板材為厚度1.6mm的FR4基板。不對稱分枝的結構兩個頻帶的插入損耗值和反射損耗值在2.45GHz為-1.42dB及-13.8B,在5.5GHz則分別為-1.7dB及-10dB,指叉分枝的結構則改善了不對稱分枝結構中的選擇度和匹配,在兩個頻帶也達到了-1.6dB與-1.99dB的插入損耗,-15.13dB與-15.7dB的反射損耗。簡而言之,在不對稱分枝的結構中達成了好的插入損耗,指叉分枝的結構則在總面積與不對稱分枝幾乎相同下達成兩個頻帶良好的選擇度與匹配。
天線設計的特點在於體積微型化,實際大小僅6x6x3.2 mm³,但仍能提供最高超過0 dBi的輻射增益。利用平面式倒F天線(Planar Inverted-F Antenna, PIFA) 為基本架構,包含一個特別設計的饋入網路以及兩個三維曲折電流路徑,由此達成雙頻操作的目的並縮小天線體積,獨特的饋入網路配合不同的接地電感元件,可以只調整5GHz頻段的操作點而不會影響到2.4 GHz,提高了天線實際應用的便利性,若把接地電感元件捨去而直接接地,則天線只操作在2.4GHz頻段,可作為藍芽天線使用。摘要(英) Dual-band filters and antennas designed for wireless Lan (ISM 2.4-2.5GHz and UNII 5.15-5.85 GHz) applications will be presented in this thesis. Generally, there are three main problems for filters with relatively large ratio of passband center frequencies: high insertion loss (more than 3dB), high return loss (less than -10dB) and bad selectivity. Two new methods are proposed to improve the problems based on the following structure. This structure is basically composed of three parts. Firstly, the coupler with three asymmetrical short-circuit lines is constructed for wide band filter response. Secondly, Dual-Behavior Resonator (DBR) is used to control passband center frequencies and different bandwidths. Finally, the Defected Ground Structure (DGS) is introduced for impedance matching enhancement. The second-order filter with asymmetrical short stubs and fork branches based on previous structures are also proposed to provide good selectivity. Good results are achieved even when high-loss FR4 substrates are used. The measured insertion loss and return loss in asymmetrical short stub structure are -1.42dB and -13.8dB at 2.45GHz, and -1.7dB and -10dB at 5.5GHz. The fork branch structure further improves the selectivity and impedance matching of the previous structure. The practical measured results are -1.6dB and -15.13dB at 2.45GHz, and -1.99dB and -15.7dB at 5.5GHz.
A technique for compact antenna design is also proposed in the thesis. Based on the structure as Planar Inverted-F Antenna (PIFA), unique matching network, and two resonators rolling in 3D, extremely compact size, which is 6x6x3.2 mm³ for FR4 substrate, is obtained. High frequency band can be adjusted freely by tuning the value of inductor. The peak gain of the proposed antenna is more than 0dBi. In Bluetooth application, the antennas can also be used without the inductor.關鍵字(中) ★ 缺陷接地結構
★ 平面式倒F天線
★ 雙重行為共振器
★ 雙頻天線
★ 雙頻濾波器關鍵字(英) ★ dual-band antenna
★ DBR
★ DGS
★ PIFA
★ dual-band fulter論文目次 頁次
中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
誌謝 ……………………………………………………… iii
圖目錄 ……………………………………………………… vii
表目錄 ……………………………………………………… ix
第一章、 緒論………………………………………………… 1
第二章、 無線區域網路之雙頻濾波器設計………………… 3
2-1 摘要………………………………………………… 3
2-2 介紹………………………………………………… 4
2-3 DBR雙頻濾波器設計……………………………… 6
2-4 不對稱分枝雙頻濾波器設計……………………… 11
2-4-1 設計構想 ……………………………………… 11
2-4-2 設計公式推導 ………………………………… 14
2-4-3 設計流程 ……………………………………… 17
2-4-4 缺陷接地結構 ………………………………… 24
2-4-5 模擬與實際結果比較 ………………………… 30
2-4-6 TRL後模擬與實際結果比較…………………… 32
2-5 指叉分枝濾波器…………………………………… 35
2-5-1 設計構想與模擬結果 ………………………… 35
2-5-2 指叉分枝濾波器模擬與實作比較 …………… 39
2-5-3 指叉分枝濾波器TRL後模擬與實作比較 …… 41
2-6 討論………………………………………………… 43
2-7 結論………………………………………………… 44
第三章、 無線區域網路之雙頻天線設計…………………… 45
3-1 摘要………………………………………………… 45
3-2 介紹………………………………………………… 45
3-3 新式雙頻天線設計………………………………… 47
3-3-1 設計環境及規格 ……………………………… 47
3-3-2 與傳統PIFA架構之比較……………………… 48
3-3-3 天線設計概念 ………………………………… 49
3-3-4 模擬結果 ……………………………………… 52
3-4 模擬結果與實際量測比較………………………… 56
3-4-1 實際製作的天線尺寸 ………………………… 56
3-4-2 模擬與實際結果比較 ………………………… 58
3-5 結論………………………………………………… 63
第四章、 總結………………………………………………… 64
參考文獻 ……………………………………………………… 65
附錄一 TRL 理論基礎……………………………………… 68參考文獻 [1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones”, IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 789–792, 1997.
[2] M. Makimoto, S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonator”, IEEE Trans. Microwave Theory & Tech., vol. 28, no. 12, pp. 1413-1417, December 1980.
[3] C. Quendo, E. Rius, C. Person, “An original topology of dual-band filter with transmission zeros”, IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1093–1096, 2003.
[4] Xuehui Guan, Zhewang Ma, Peng Cai, Guohui Li, Yoshio Kobayashi, Tetsuo Anada, and Gen Hagiwara, ” A dual-band bandpass filter synthesized by using frequency transformation and circuit conversion technique”, IEEE AMPC Proceedings, vol. 4, 2005.
[5] Lin-Chuan Tsai and Ching-Wen Hsue, “Dual-band bandpass filters using equal-length coupled-serial-shunted lines and z-transform technique”, IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1111-1117, 2001.
[6] Ching-Wen Tang, Sheng-Fu You, “Using the technology of low temperature co-fired ceramic to design the dual-band bandpass filter“, IEEE Microwave Wireless Comp. Lett., vol. 16, pp. 407-409, 2006.
[7] Cheng-Chung Chen, “Dual-band bandpass filter using coupled resonator pairs”, IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 259-261, 2005.
[8] Valeria Palazzari, Stéphane Pinel, Joy Laskar, Luca Roselli, and Manos M. Tentzeris, “Design of an asymmetrical dual-band WLAN filter in liquid crystal polymer(LCP) system-on-package technology”, IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 165-167, 2005.
[9] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters , Impedance Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980.
[10] Yue Ping Zhang and Mei Sun, “Dual-band microstrip bandpass filter using
stepped-impedance resonators with new coupling schemes”, IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3779-3785, 2006.
[11] Maria de Castillo Velázquez-Ahumada, Jesús Marte, and Francisco Medina, “Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling”, IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1082-1086, 2004.
[12] S. Schulteis, C. Waldschmidt, C. Kuhnen, and W. Wiesbeck, “Design of a miniaturized dual band planar inverted F antenna”, IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 3123-3126, 2004.
[13] B. Sun, Q. Liu and H. Xie, “Compact monopole antenna for GSM/DCS
operation of mobile handsets”, IEE Electronics Letters, vol. 39, pp. 1562-1563, 2003.
[14] Gabriel K. H. Lui and Ross D. Murch, “Compact dual-frequency PIFA designs using LC resonators”, IEEE Trans. Antennas Propagat., vol. 49, pp. 1016-1019, 2001.
[15] Nemai Chandra Karmakar, Senior Member, IEEE, P. Hendro, and L. S. Firmansyah, “Shorting strap tunable single feed dual-band PIFA”, IEEE Microwave Wireless Comp. Lett., vol. 13, pp. 13-15, 2003.
[16] Ke-Chiang Lin, Chun-Fu Chang, Min-Chung Wu, and Shyh-Jong Chung, “Dual-Bandpass Filters With Serial Configuration Using LTCC Technology”, IEEE Trans. Microwave Theory Tech., Vol. 54, pp. 2321-2328, 2006.
[17] D. M. Pozar, Microwave Engineering, 2nd edition. New York: Wiley, 1998.
[18] Jia-Sheng Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
[19] HFSS. Ansoft Corporation, Pittsburgh, PA, 2001.
[20] Microwave Office. Appl. Wave Res. Inc., El Segundo, CA, 2002.
[21] ADS version 2003A, Agilent Inc., 2003.
[22] 林祐生,微波濾波器設計課程講義,95年指導教授 丘增杰(Tsen-chieh Chiu) 審核日期 2007-7-5 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare