參考文獻 |
[1] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid State Circuits (JSSC), vol. 41, no. 3, pp. 712-727, March 2006.
[2] C. A. Zukowski and S.-Y. Wang, “Use of selective precharge for low power content-addressable memories,” in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), 1997, vol. 3, pp. 1788-1791.
[3] T. Juan, T. Lang, and J. J. Navarro, “Reducing TLB power requirements,” in Int. Symp. on Low Power Electronics and Design, Monterey, Aug. 1997, pp. 196-201.
[4] K.-J. Lin and C.-W. Wu, “A low-power CAM design for LZ data compression,” IEEE Trans. Computers, vol. 49, no. 10, pp. 1139-1145, Oct. 2000.
[5] G. Thirugnanam, N. Vijaykrishnan, and M. J. Irwin, “A novel low power CAM design,” in Proc. 14th IEEE ASIC/SOC Conf., Arlington, Sept. 2001, pp. 198-202.
[6] Y.-L. Hsiao, D.-H. Wang, and C.-W. Jen, “Power modeling and low-power design of content addressable memories,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Sydney, May 2001, pp. 926-929.
[7] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-power CMOS fully parallel content-addressable memory macros,” IEEE J. Solid-State Circuits (JSSC), vol. 36, no. 6, pp. 956-968, Jun. 2001.
[8] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-power precomputation-based fully parallel content-addressable memory,” IEEE J. Solid State Circuits (JSSC), vol. 38, no. 4, pp. 654-662, Apr. 2003.
[9] I. Arsovski and A. Sheikholeslami, “A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories,” IEEE J. Solid State Circuits (JSSC), vol. 38, no. 11, pp. 1958-1966, Nov. 2003.
[10] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits (JSSC), vol. 39, no. 9, pp. 1512-1519, Sept. 2004.
[11] Efthymiou and J. D. Garside, “A CAM with mixed serial-parallel comparison for use in low energy caches,” IEEE Trans. VLSI Systems, vol. 12, no. 3, pp. 325-329, March 2004.
[12] B.-D. Yang and L.-S. Kim, “A low-power CAM using pulsed NAND–NOR match-line and charge-recycling search-line driver,” IEEE J. Solid State Circuits (JSSC), vol. 40, no. 8, pp. 1736-1744, Aug. 2005.
[13] H.-Y. Li, C.-C. Chen, J.-S. Wang, and C. Yeh, “An AND-type match-line scheme for high-performance energy-efficient content addressable memories,” IEEE J. Solid State Circuits (JSSC), vol. 41, no. 5, pp. 1108-1119, May 2006.
[14] Y.-J. Chang, Y.-H. Liao, and S.-J. Ruan, “Improve CAM power efficiency using decoupled match line scheme,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), Apr. 2007, pp. 1-6.
[15] Y.-J. Chang, “Two-layer hierarchical matching method for energy-efficient CAM design,” IEE Electronics Letters, vol. 43, no. 2, Jan. 2007, pp. 80-82.
[16] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE J. Solid-State Circuits (JSSC), vol. 38, no.1, pp. 155-158, Jan. 2003.
[17] H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka, and K. Arimoto, “A 143MHz 1.1W 4.5Mb dynamic TCAM with hierarchical searching and shift redundancy architecture,” in Digest of IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2004, pp. 208-210.
[18] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H. J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, and T. Yoshihara, “A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture,” IEEE J. Solid State Circuits (JSSC), vol. 40, no. 1, pp. 245-253, Jan. 2005.
[19] S. Choi, K. Sohn, and H.-J. Yoo, “A 0.7-fJ/bit/search 2.2-ns search time hybrid-type TCAM architecture,” IEEE J. Solid-State Circuits (JSSC), vol. 40, no. 1, pp. 254-260, Jan. 2005.
[20] V. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, “EaseCAM: an energy and storage efficient TCAM-based router architecture for IP lookup,” IEEE Trans. Computers, vol. 54, no. 5, pp. 521-533, May 2005.
[21] W. Wu, J. Shi, L. Zuo, and B. Shi, “Power-efficient TCAMs for bursty access patterns,” IEEE Micro, vol. 25, no. 4, pp. 64-72, Aug. 2005.
[22] M.-J. Akhbarizadeh, M. Nourani, and C.D. Cantrell, “Prefix segregation scheme for a TCAM-based IP forwarding engine,” IEEE Micro, vol. 25, no. 4, pp. 48-63, Aug. 2005.
[23] G. Kasai, Y. Takarabe, K. Furumi, and M.Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2003, pp. 387-390.
[24] D. S. Vijayasarathi, M. Nourani, M. J. Akhbarizadeh, and P. T. Balsara, “Ripple-precharge TCAM: a low-power solution for network search engines,” in Proc. IEEE International Conference on Computer Design (ICCD), Oct. 2005, pp. 243-248.
[25] J.-S. Wang, C.-C. Wang, and C. Yeh, “TCAM for IP-address lookup using tree-style AND-type match lines and segmented search lines,” in Digest of IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2006, pp. 577-586.
[26] S.-W. Chang, P.-T. Huang, and W. Hwang, “A novel butterfly match-line scheme with don't-care based hierarchical search-line for TCAM”, in Proc. 17th VLSI/CAD Symposium, Aug. 2006, pp. 286-289.
[27] P.-T. Huang, S.-W. Chang, W.-Y. Liu, and W. Hwang, “A 256x128 energy-efficient TCAM with novel low power schemes,” in Proc. IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Apr. 2007, pp. 1-4.
[28] K. R. Viveka, A. Kawle, and B. Amrutur, “Low power pipelined TCAM employing mismatch dependent power allocation technique,” in Proc. IEEE International Conference on VLSI Design (VLSID), Jan. 2007, pp. 638-646.
[29] N. Mohan and M. Sachdev, “Low-capacitance and charge-shared match lines for low-energy high-performance TCAMs,” IEEE J. Solid State Circuits (JSSC), vol. 42, no. 9, pp. 2054-2060, Sept. 2007.
[30] N. Mohan and M. Sachdev, “A static power reduction technique for ternary content addressable memories,” in Proc. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), vol. 2, May 2004, pp. 711-714.
[31] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu, “A built-in self-repair design for RAMs with 2-D redundancies,” IEEE Trans. Very Large Scale Integration Systems, vol. 13, no. 6, pp. 742-745, Jun. 2005.
[32] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, “A simulator for evaluating redundancy analysis algorithms of repairable embedded memories,” in IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), July. 2002, pp. 68-73.
[33] R. Nadkarni, I. Arsovski, R. Wistort, and V. Chickanosky, “Improved match-line test and repair methodology including power-supply noise testing for content-addressable memories,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2006, pp. 1-9.
[34] H. Noda, K. Inoue, H. J. Mattausch, T. Koide, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, and T. Yoshihara, “Embedded low-power dynamic TCAM architecture with transparently scheduled refresh,” IEICE Trans. on Electronics, vol. E88-C, no. 4, pp. 622-629, Apr. 2005.
[35] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in self-test and self-diagnosis scheme for embedded SRAM,” in Proc. IEEE Asian Test Symp. (ATS), Dec. 2000, pp. 45-50.
[36] J.-F. Li, “Testing ternary content addressable memories with comparison faults using march-like tests,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 5, May 2007, pp. 919-931.
[37] F. Shafai, K. J. Schultz, G. F. R. Gibson, A. G. Bluschke, and D. E. Somppi, “Fully parallel 30-MHz, 2.5-Mb CAM,” IEEE J. Solid-State Circuits (JSSC), vol. 33, no. 11, pp. 1690-1696, Nov. 1998.
[38] C.-C. Chen, H.-Y. L, and J.-S. Wang, “The split-path AND-type match-line scheme for very high-speed content addressable memories,” Asian Solid-State Circuits Conference, Nov. 2005, pp. 525-528.
[39] A. Roth, D. Foss, R. McKenzie, and D. Perry, “Advanced ternary CAM circuits on 0.13um logic process technology,” in Proc. IEEE Custom Integrated Circuits Conference, Oct. 2004, pp. 465-468.
[40] X. Yang, S. Sezer, J. McCanny, and D. Burns, “Novel Content Addressable Memory Architecture for Adaptive Systems,” IEEE Second NASA/ESA conference on Adaptive Hardware and Systems (AHS), Aug. 2007, pp. 633-640.
[41] J.-F. Li, J.-C. Yeh, R.-F. Huang, C.-W. Wu, P.-Y. Tsai, A. Hsu, and E. Chow, “A built-in self-repair scheme for semiconductor memories with 2-D redundancies,” in Proc. IEEE Int. Test Conf. (ITC), Sept. 2003, pp. 393-402.
[42] T.-W. Tseng, J.-F. Li, C.-C. Hsu, A. Pao, K. Chiu, and E. Chen, “A reconfigurable built-in self-repair scheme for multiple self-repairable RAMs in SOCs,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2006, pp. 1-8.
[43] Y.-J. Huang, D.-M. Chang, and J.-F. Li, “A built-in redundancy-analysis scheme for self-repairable RAMs with two-level redundancy,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Oct. 2006, pp. 362-370.
[44] J.-F. Li and C.-H. Wu, “Verification methodology for built-in self-repairable memory systems,” in Proc. IEEE Asian Test Symp. (ATS), Nov. 2006, pp. 109-114.
[45] T.-W. Tseng, C.-H. Wu, Y.-J. Huang, J.-F. Li, Alex Pao, K. Chiu, and E. Chen, “A built-in self-repair scheme for multiport RAMs,” in Proc. IEEE VLSI Test Symp. (VTS), May 2007, pp. 355-360.
[46] J.-F. Li, S.-K. Lu, S.-A. Hwang, and C.-W. Wu, “Easily testable and fault-tolerant FFT butterfly networks,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 919-929, Sep. 2000.
[47] S. K. Lu, “A novel built-in self-repair approach for embedded RAMs,” Journal of Electronic Testing: Theory and Application, vol. 19, pp. 315-324, June 2003.
[48] J.-S. Wang and C.-H. Huang, “High-speed and low-power CMOS priority encoders,” IEEE J. Solid-State Circuits (JSSC), vol. 35, no. 10, pp. 1511-1514, Oct. 2000. |