博碩士論文 955201071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.139.238.176
姓名 許神賢(Shen-Sian Syu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具避障與自動搬運功能之天車系統
(The overhead crane system with object-transporting and obstacle-avoiding)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是針對天車系統(Overhead Crane System)設計模糊控制器,用以消除天車運作過程中所造成的負載擺盪及快速定位,並且利用攝影機觀察環境,來達成搬運物體和閃避障礙物的功能。天車系統被廣泛地使用在各工業領域中,在搬運物體時,操作者必需有足夠的經驗並且小心操作,避免物體在移動時產生大角度的擺盪,且要謹慎閃避移動路線上的障礙物。由於天車系統本身具有欠驅動(Underactuated)、複雜之非線性、難以模型化之參數誤差的特性,容易造成控制之精確度與穩定性不足。所以本論文根據操作者的經驗,不需要系統建模,利用模糊理論,設計模糊控制器,讓天車系統能在 三軸快速定位,以及消除負載擺盪。同時,本論文還將進行傳統控制之設計與實驗,用以比較模糊控制與傳統控制在天車控制上之性能優劣。除此之外,我們在天車系統上加了一個攝影機,讓天車系統利用攝影機所得到的視覺影像,找到搬運物體或障礙物,使得天車能自行搬運物體到使用者所指定的目標位置,即使移動路線上可能遭遇障礙物,天車也能閃避障礙物而到達目標位置。本論文作品整合這些技術和功能,實驗結果成功地展現出天車系統控制的效能與準確性。
摘要(英) In this thesis, we design fuzzy controls to achieve anti-swing and position control for overhead cranes. Furthermore, with the aids of camera, the crane also accomplishes the works of object-transporting and obstacle-avoiding. It is known that overhead cranes are widely used in factories and docks. Experienced operators operate the crane fast and carefully without load swing and obstacles collision. Since the overhead crane system is underactuated and highly nonlinear, it is difficult to control by a systematic process. Moreover, it is hard to be modeled exactly, the control performance and stability are usually deteriorated by the modeling errors. This thesis designs fuzzy controllers to achieve three-dimensional position control and anti-swing control for the crane without its model. Moreover, a camera is installed above the crane to recognize the positions of objects and obstacles such that the crane system can transport objects from the initial position to the assigned destination and avoid the obstacles automatically. From the experimental results, the proposed fuzzy controller has better control performance than the conventional controller does. Furthermore, the goals of object- transporting and obstacle-avoiding are also achieved accurately.
關鍵字(中) ★ 避障
★ 欠驅動
★ 影像
★ 天車
★ 模糊控制
關鍵字(英) ★ crane
★ fuzzy control
★ avoiding-obstacle
★ underactuated
★ image
論文目次 摘要..........I
Abstract..........II
致謝..........III
目錄..........IV
圖目錄..........VI
表目錄..........IX
第一章 緒論..........1
1.1 前言..........1
1.2 文獻回顧..........1
1.3 研究動機與目的..........3
1.4 報告架構..........4
第二章 天車系統架構..........5
2.1 天車系統架構..........5
2.1.1 天車機構..........5
2.1.2 個人電腦..........8
2.1.3 馬達控制卡..........8
2.1.4 網路攝影機..........8
2.2 欠驅動系統特性..........9
2.3 人機介面..........10
第三章 控制器的設計..........12
3.1 天車控制系統描述..........12
3.2 模糊控制器..........14
3.3 P控制器..........24
3.4 模糊P控制器..........26
3.5 實驗結果與討論..........28
3.5.1 實驗一:短距離移動控制..........29
3.5.2 實驗二:長距離移動控制..........36
3.5.3 實驗三:初始狀態受干擾..........42
3.5.4 實驗四:繩索長度變動之移動控制..........49
3.5.5 實驗結果分析..........55
第四章 天車搬運及避障..........56
4.1 簡介..........56
4.2 影像處理..........56
4.2.1 色彩空間模型..........57
4.2.2 背景相減..........58
4.2.3 連通物件法..........59
4.2.4 邊緣偵測..........60
4.2.5 利用邊緣來切割不同面..........61
4.2.6 侵蝕、膨脹..........62
4.2.7 物體實際的位置..........63
4.3 天車搬運系統..........66
4.4 天車避障系統..........68
4.4.1 轉折點之設計..........69
4.4.2 避障時的擺盪修正..........73
4.5 實驗結果與討論..........74
4.5.1 實驗一:天車之搬運控制..........74
4.5.2 實驗二:天車之避障控制..........77
4.5.3 實驗結果分析..........81
第五章 結論..........82
5.1 結論..........82
5.2 未來展望..........82
參考文獻..........84
參考文獻 [1]劉清益,工廠吊車之非線性抗擺動控制,國立臺灣大學機械工程研究所碩士論文,2003。
[2]Diantong Liu , Jianqiang Yi , Dongbin Zhao, and Wei Wang , “Adaptive sliding mode fuzzy control for a two-dimensional overhead crane,” Mechatronics, vol. 15, no. 5, pp. 505-522, 2005.
[3]A. Giua, C. Seatzu and G. Usai, “Observer-controller design for cranes via Lyapunov equivalence,” Automatica, vol. 35, no. 4, pp. 669-678, 1999.
[4]G. Corriga, A. Giua and G. Usai, “An implicit gain-scheduling controller for cranes,” IEEE Trans. Contr. Syst. Technol., vol. 6, no. 1, pp. 15-20, 1998.
[5]A. Piazzi and A. Visioli, “Optimal dynamic inversion based control of an overhead crane,” IEE Proc.-Control Theory Appl., vol. 149, no. 5, pp. 405-411, 2002.
[6]J. J. Hamalinen, A. Marttinen, L. Baharova, and J. Virkkunen, “Optimal path planning for a trolley crane fast and smooth transfer of load,” IEE Proc.-Control Theory Appl., vol. 142, no. 1, pp. 51-57, 1995.
[7]B. d’Andrea and J. M. Coron, “Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach,” Automatica, vol. 36, no. 4, pp. 587-593, 2000.
[8]X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane based on partial feedback linearization,” Proceedings of the 2005 IEEE International Conference on Control and Automations, pp. 1074–1078.
[9]W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proc.-Control Theory Appl., vol. 151, no. 6, pp. 683-690, 2004.
[10]Y. Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica, vol. 18, no. 3, pp. 257-266, 1982.
[11]M. A. Karkoub and M. Zribi, “Modelling and energy based nonlinear control of crane lifters,” IEE Proc.-Control Theory Appl., vol. 149, no. 3, pp. 209-216 , 2002.
[12]H. H. Lee, “Modeling and control of three-dimensional overhead crane,” J. Dyn. Syst. Meas. Control-Trans. ASME, vol. 120, pp. 471–476, 1998.
[13]R. M. Hischorn and G. Miller, “Control of Nonlinear system with friction,” IEEE Trans. Contr. Syst. Technol., vol. 28, no. 6, pp. 588-595, 1992.
[14]T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by PID+Q controller,” Int. J. Control, vol. 70, no. 4, pp. 631-650, 1998.
[15]任正隆(徐國鎧 教授指導),吊車系統利用視覺回授之滑動模式控制,國立中央大學電機所碩士論文,2006。
[16]F. Omar, F. Karray, O. Basir and L.Yu., “Autonomous Overhead Crane System Using a Fuzzy Logic Controller,” J. Vib. Control, vol. 10, pp. 1255-1270, 2004.
[17]Y. Fang, W. E. Dixon, D. M. Dawson and E. Zergeroglu, “Nonlinear coupling control laws for an underactuated overhead crane system,” Mechatronics, vol.8, no. 3, pp. 418-423, 2003.
[18]A. Z. Al-Garni, K. A. F. Moustafa, and S. S. A. K. Javeed Nizami, “Optimal control of overhead cranes”, Control Eng. Practice, vol.3, no. 9, pp. 1277-1284, 1990.
[19]A. benhidjeb and G. L. Gissinger “Fuzzy control of an overhead performance comparison with classic control”, Control Eng. Practice, vol.3, no. 12, pp. 1687-1696, 1995.
[20]Arto Marttien, Jouko Virkkunen, and Riku T. Salminen, “Control Study with a Pilot Crane”, IEEE Trans. Educ., vol.33, no. 3, 1990.
[21]Diantong Liu, Jianqiang Yi, Dongbin Zhao, and Wei Wang, “Adaptive sliding mode fuzzy control for a two-dimensional overhead crane”, Mechatronics, vol.15, no. 5, pp. 505-522, 2005.
[22]劉士彰(王文俊 教授指導),具視覺能力之鞦韆機器人,國立中央大學電機所碩士論文,2006。
[23]維基百科之網站
http://en.wikipedia.org/wiki/YUV
[24]陳翔傑(王文俊 教授指導),自動化車牌辨識系統設計,國立中央大學電機所碩士論文,2005。
指導教授 王文俊(Wen-June Wang) 審核日期 2008-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明