博碩士論文 955201104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.102.18
姓名 楊衍賢(Yan-hsien Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 醫療植入通訊服務頻帶之極低功耗壓控振盪器暨Ku頻段壓控振盪器與除頻器之研製
(The Implementations of MICS Band Ultra Low Power Voltage Controlled Oscillator and Ku Band Local Oscillator and Frequency Divider)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以TSMC 0.18-μm CMOS製程,應用於醫療植入通訊服務頻帶之極低功耗壓控振盪器、Ku頻段壓控振盪器與除頻器之研製。
設計的目標針對兩種不同的系統頻段的壓控振盪器設計,以及能操作於高頻的寬頻除頻器。而各電路之特性如下:(1)低功耗壓控振盪器設計,利用選擇較大的電晶體尺寸,使得元件操作於次臨界區,利用此區域低電流操作的特性,在適當的偏壓下取得較大的轉導值,接著找出低操作電流跟Q值的相關性,進而得以設計μW直流消耗的壓控振盪器。量測結果,直流功耗為0.846mW,中心頻率為402MHz,可調範圍為16MHz,相位雜訊為-119.4dBc/Hz,FOM為-172。(2)操作於12.8GHz的低相位雜訊壓控振盪器設計,利用轉導提升的機制,改善考畢茲電路不易起振的問題,並利用考畢茲電路低相位雜訊的特性結合雜訊位移的觀念,並利用較低閃爍雜訊的PMOS元件去取代NMOS元件,讓電路擁有較好的相位雜訊。量測結果,在中心頻率12.8GHz時,偏移主頻1 MHz之相位雜訊為-117.94 dBc/Hz,可調範圍為800MHz,直流功耗為8.53mW,FOM為-190.77。(3)應用於12.8GHz除二的除頻器電路,在設計上利用shunt peaking的機制,抵銷寄生電容對除頻器造成的延遲作用,有效的提高除頻器的操作頻率和頻寬,且能於多種頻帶下操作,簡化在鎖相迴路設計上需設計數個不同操作條件除頻器的問題。整體的可除頻寬為4.5-16.8GHz,頻寬為12.3GHz,功率消耗為13.32mW,FOM為1.26。
摘要(英) The thesis describes the circuits which are implemented in TSMC 0.18-μm CMOS technology. The implemented circuits include an ultra low power VCO for MICS (Medical Implant Communication Service) system, a low phase noise VCO and a wide band frequency divider for Ku band system.
These designs focus on VCO circuits and wide band frequency divider which operate in two different bands as follows. (1) The ultra low power VCO utilizing large transistor size can operate in subthreshold region. Therefore, an ultra lower current operation of the MICS VCO is achieved. The correlation between Q factor and current dissipation is found in this study. The implemented MICS VCO dissipates only 0.846mW. The measured performance of VCO is listed below, center frequency is 402MHz, tuning range is 16 MHz, phase noise is -119.4 dBc/Hz at 1MHz offset, and -172 dBc/Hz of Figure-of-Merit (FOM)。(2) A gm-boosted method is adopted to release the start-up condition which can compare with the traditional Colpitts oscillator. PMOS is used for reducing the flicker noise. The implemented Ku-band VCO oscillates in 12.8GHz with the tuning range of 800 MHz under power dissipation of 8.53mW. An excellent phase noise is obtained as -117.94 dBc/Hz at 1MHz offset, which is correspondent to a Figure-of-Merit (FOM) of -190.77 dBc/Hz. (3) The 12.8GHz 1/2-frequency divider employs a shunt peaking method which reduces the influence of the parasitic capacitor. Because of reducing the parasitic capacitor, the deigned frequency divider can enhance the operating frequency and bandwidth. This divider can be used in multi-band, and therefore the complication of phase lock loop can be reduced. The dividable range is from 4.5 to 16.8GHz, which is equivalent to a bandwidth of 12.3GHz. The power dissipation is 13.32mW, and the calculated FOM is 1.26.
關鍵字(中) ★ 極低功耗
★ 轉導提升
★ 寬頻除頻器
關鍵字(英) ★ ultra low power
★ gm boosting
★ shunt peaking
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅸ
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 MICS系統之壓控振盪器 3
2-1 簡介 3
2-2 振盪器之導論 4
2-3 振盪器之重要參數 5
2-4 壓控振盪器之原理分析 7
2-5 低功耗壓控振盪器設計 13
2-6 應用於MICS頻段之極低功率壓控振盪器設計 15
2-7 MICS頻段之極低功率壓控振盪器量測結果與討論 21
第三章 應用於802.16WMAN之12.8 GHz壓控振盪器 26
3-1 簡介 26
3-2 相位雜訊導論 27
3-2.1 Lesson相位雜訊模型 29
3-2.2線性時變理論分析 35
3-3 應用於12.8 GHz轉導提升式壓控振盪器 39
3-3.1考畢茲振盪器操作分析 40
3-3.2轉導提升機制原理分析 42
3-4 轉導提升式考畢茲壓控振盪器量測結果與討論 44
第四章 應用於802.16WMAN之12.8 GHz除頻器 49
4-1 簡介 49
4-2 除頻器概述 50
4-3 除頻器之重要參數 53
4-4應用於802.16WMAN之12.8 GHz除頻器 54
4-5 Shunt peaking電流模式除頻器量測結果與討論 58
第五章 結論 62
5-1 結論 62
5-2 未來方向 63
參考文獻 64
參考文獻 [1]M. R. Yuce, S. W. P. Ng, N. L. Myo, C. K. Lee, J. Y. Khan, and Wentai Liu, “A MICS Band Wireless Body Sensor Network” in Proc. IEEE Wireless Communications and Networking Conference, March 11-15, 2007, pp. 2473-2478.
[2]D. Sagan, “RF Integrated Circuits for Medical Applications:” Zarlink Semiconductor.
[3]C. M. Hsu, C. M. Lee, T. C. Yo, and C. H. Luo, “The low power MICS band biotelemetry architecture and its LNA design for implantable applications” in IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2006, pp. 435-438.
[4]H. Lee, “A Subthreshold Low Phase Noise CMOS LC VCO for Ultra Low Power Applications,” IEEE Microwave and Wireless Component Letter, vol. 17, pp. 796-798, Nov 2007.
[5]N. M. Neihart, and R. R. Harrison, “Micropower Circuits for Bidirectional Wireless Telemetry in Neural Recording Applications,” IEEE Trans. Biomed. Eng., vol. 52, no. 11, pp. 1950-1959, Nov. 2005.
[6]D. J. Young, S. J. Mallin, and M. Cross, “2 GHz CMOS voltage-controlled oscillator with optimal design of phase noise and power dissipation,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 131-134, June 2007.
[7]H-R Kim, C-Y Cha, S-M Oh, M-S Yang, and S-G Lee, “A very low-power quadrature VCO with back-gate coupling, ” IEEE J. Solid-State Circuits, Vol. 39, pp. 952-955, Dec. 2004.
[8]B. Bisla, R. Eline, and L.M. Franca-Neto, “RF System and Circuit Challenges for WiMAX,” Intel Technology Journal, vol. 8, No. 3, pp. 189-199, Aug. 2004.
[9]A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, “Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,” IEEE Communications Magazine, vol. 43, No. 2, pp. 129-136, Feb. 2005.
[10]S. M. Cherry, “WiMax and Wi-Fi Separate and Unequal,” IEEE Spectrum, vol. 41, No. 3, pp. 16-16, Mar. 2004.
[11]“Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Standard for Local and metropolitan area networks, IEEE stdTM 802.16-2004,2004.
[12]D. B. Lesson, “A Simple Model of Feedback Oscillator Noise Spectrum, ” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[13]J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May 2000.
[14]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, U.K.: Cambridge Univ. Press, 1998.
[15]H. Kim, W. Kim, S. Ryu, S. Kang, B.-H. Park, and B. Kim, “A Low Phase Noise LC VCO in 65 nm CMOS Process Using Rectangular Switching Technique,” IEEE Microwave and Wireless Component Letter, vol. 17, NO. 8, pp. 610-612, Nov 2007.
[16]L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Trans, Microwave Theory Tech., vol. 52, pp. 1273-1278, April 2004.
[17]N.-J. Oh and S.-G Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 733-735, Nov. 2005.
[18]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[19]X. Li, S. Shekhar, and D. J. Allstot, “Gm boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18 μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 2609-2619, Dec. 2005.
[20]E. Hegazi, H. Sjoland, and A. A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[21]L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-Band Cross-Coupled Complementary Oscillator With Low Phase-Noise Performance,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1273-1278, Apr. 2004.
[22]T. K. K. Tsang and M. N. El-Gamal, “A High Figure of Merit and Area-Efficient Low-Voltage (0.7-1V) 12GHz CMOS VCO,” IEEE Radio Frequency Integrated Circuits Symposium., pp. 89-92, June 2003.
[23]S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 10, pp. 673-675, Oct. 2005.
[24]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, pp. 1415-1424, Sept. 2004.
[25]X.P. Yu, M. A. Do, J.G. Ma, K.S. Yeo, R. Wu and G.Q. Yan, “1V 10GHz CMOS frequency divider with low power consumption,” Electron. Lett., vol. 40, pp. 467-469, April 2004.
[26]H.-D. Wohlmuth, D. Kehrer, and W. Simbourger, “A high sensitivity static 2:1 frequency divider up to 19 GHz in 120 nm CMOS,” in Proc. IEEE RFIC, 2002, pp. 231-234.
[27]M. Tiebout, “A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Low-Power Frequency Divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170-1174, July 2004.
[28]H.-D. Wohlmuth and D. Kehrer, “A High Sensitivity Static 2:1 Frequency Divider up to 27GHz in 120nm CMOS,” ESSCIRC 2002, Florence, Italy.
[29]Qiuting Huang, “On the Exact Design of RF oscillators,” IEEE Custom Integrated Circuits Conference, pp. 41-44, May 1998.
[30]Qiuting Huang, “Phase Noise to Carrier Ratio in LC Oscillators,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, vol.47, no.7, pp. 965-980 July 2000.
[31]L. Dai, R. Harjani, Design of High-Perfoemance CMOS Voltage-Controlled Oscillators, Kluwer Academic Publishers, 2003.
[32]B. Razavi, RF Microelectronics, Prentice Hall, Inc.1998.
[33]B. Soltanian and P. R. Kinget, “Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators” IEEE J. of Solid-State Circuits, vol. 41, no. 8, pp.1792–1802, Aug. 2006.
[34]P. Andreani and A. Fard, “More on the 1/f2 Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators” IEEE J. of Solid-State Circuits, vol. 41, no. 12, pp.2703–2712, Dec. 2006.
[35]P. Andreani , X. Wang , L. Vandi , and A. Fard “A Study of Phase Noise in Colpitts and LC-Tank CMOS Oscillators,” IEEE J. of Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May 2005.
[36]Ulrich L. Rohde, Microwave and Wireless Synthesizers: Theory and Design, Chap. 2, pp. 83, John Wiley 1997.
[37]R. E. Best, Phase-Locked Loops, 3rd Ed, McGraw-Hill International, 1997.
[38]M. Perrott, “High Speed Communication Circuits and Systems,” MIT open courseware, 2003.
[39]鄒育霖, “Ka與V頻段低相位雜訊雙推式振盪器之研製,” 碩士論文, 國立中央大學, 2006。
[40]陳獻瑞,“無線寬頻系統之前端接收機與頻率合成器暨V頻段除頻器之研製,” 碩士論文, 國立中央大學, 2007。
[41]呂盈達, “微波存取全球互通頻段接收機前端電路暨K頻段低雜訊放大器之研製,” 碩士論文, 國立中央大學, 2007。
[42]梁可駿, “以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製,” 碩士論文, 國立中央大學, 2007。
[43]高曜煌, “射頻鎖相迴路IC設計,” 滄海書局, 2005.
[44]劉深淵, 楊清淵, “鎖相迴路,” 滄海書局,2006.
指導教授 邱煥凱(Hwann-kaeo Chiou) 審核日期 2008-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明