參考文獻 |
[1] M. Feng et al., “Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistor (PHBT) Experimentally Demonstrating fT=765 GHz at 25 oC Increasing to fT=845 GHz at -55 oC,”
[2] Shu-Han Chen et al., “Low Turn-On Voltage and High-Current InP/In0.37Ga0.63As0.89Sb0.11/In0.53Ga0.47As Double Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 655-657, Jul. 2008.
[3] 鄧國宏, “具銻砷化銦鎵基極之磷化銦異質接面雙載子電晶體製作與分析” 碩士論文,國立中央大學,民國97年。
[4] 陳書涵, “銻砷化銦鎵之雙異質接面雙及性電晶體成長與特性分析” 博士論文,國立中央大學,民國97年
[5] 陳馨媛, “具銻砷化銦鎵基極之異質接面雙載子電晶體特性與材料分析”碩士論文,國立中央大學,民國97年。
[6] W. Liu, Handbook of III-V of Heterojunction Bipolar Transistors, John Wiley and sons, 1998.
[7] Nick G. M. Tao et al., “Surface Recombination Current in ”Type-II” NpN InP-GaAsSb-InP Self-aligned DHBTs,” IEEE Electron Device Lett., vol. 52, no. 6, pp. 1061-1066, Jun. 2005.
[8] K. Y. Cheng, et al., “Ultra-High Speed Composition Graded InGaAsSb/GaAsSb DHBTs with fT = 500 GHz Grown by Gas-Source Molecular Beam Epitaxy,”Proc. IPRM, pp. 89-91, 2006.
[9] Donald A. Neamen ,Semiconductor Physics & Devices, 3nd ed. McGraw-Hill, 2002
[10] J. H. Tsai, et al., “An extremely low offset voltage AlInAs/GaInAs heterojunction-emitter bipolar transistor,” supperlattices and Microstructures., vol. 23, pp. 1297-1307, 1998.
[11] Z. Jin et al., “Surface-recombination-free InGaAs/InP HBTs and the base contact recombination,” Solid State Electron., vol. 50, pp. 1088-1091, 2008.
[12] E. Tokumitsu et al., “Reduction of Surface Recombination Current in InGaAs/InP Pseudo-Heterojunction Bipolar Transistors Using a Thin InP Passivation Layer, ” IEEE Electron Device Lett., vol.10, no. 12, pp. 585-587, Dec. 1989.
[13] M. Shur et al., Handbook Series on Semiconductor parameters, World Scientific, 1996.
[14] L. M. Fraas et al., “Fundamental Characteristization Studies of GaSb Solar Cell,” Proc. 22nd IEEE PVSC., pp. 80-84 ,1991.
[15] Jack R. Dixon ,“Photoelectromagnetic Effect in Indium Arsenide,” Physical Rev., vol. 109, no. 2, pp. 374-378, Jul. 1957.
[16] M. A. Grishin et al., “Electron structure and electron dynamics at InSb(111)2×2 semiconductor surface,” Appl. Phys. A 76, 299-302, 2003.
[17] Z. Jin et al., “Surface Recombination Mechanism in Graded-Base InGaAs-InP HBTs,” IEEE Trans Electron Devices., vol. 51, no. 6, Jun. 2004.
[18] C.R. Bolognesi et al.,“Extraction of the Average Collector Velocity in High-speed “Type-II” InP-GaAsSb-InP DHBts,” IEEE Electron Device Lett., vol. 25, n. 12, pp.769-771, Dec. 2004
[19] Kikawa T et al., “Passivation of InP-based heterostructure bipolar transistors in relation to surface Fermi level,” Japanese J Appl Phys Part 1., vol. 38, pp. 1195-1199, 1999.
[20] D. A. Humphrey et al., “High-Current-Gain Submicronmeter InGaAs/InP Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., vol.19, no. 10, pp. 524-526, 1988.
[21] C. H. Joyner et al., “Reduction of the Surface Recombination Current in InGaAs/InP Psaudo-Heterojunction Bipolar Transistors Using a Thin InP Passivation Layer ”, IEEE Electron Device Lett., vol. 10, no. 10, pp. 585-587, Dec. 1989.
[22] Hao-Hsiung Lin etal., “Super-gain AlGaAs/GaAs Heterojunction Bipolar Transistors Using an Emitter-thinning design”, Appl. Phys. Lett., vol. 47, pp. 839-841, Oct. 1985.
[23] R. Bhat et al., “Dramatic Enhancement in the Gain of a GaAs/AlGaAs Heterojunction Bipolar Transistors by Surface Chemical Passivation”, Appl. Phys. Lett., vol. 51, pp. 33-34, Jul. 1987.
[24] Mohammad Sn et al., “Suppression of Emitter Size Effect on the Current-voltage Characteristics of AlGaAs/GaAs Heterojunction Bipolar Transistors,” Appl. Phys. Lett., vol. 56, pp. 937-939, Mar. 1990.
Hsien-Chin Chiu et al, “High Linear Low-K BCB-Bridged AlGaAs/InGaAs Power HFETs”, IEEE Radio Frequency Integrated Circuits Symposium , 2002.
[25] E. Yablonovitch et al, “Nearly Ideal InP/In0.53Ga0.47As Heterojunction Regrowth on Chemically prepared In0.53Ga0.47As Surface”, Appl. Phys. Lett., vol. 60, pp.371-373, Jan. 1992.
[26] Nobuyuki Hayama et al., “Emitter Size Effect on Current Gain in Fully Self-aligned AlGaAs/GaAs HBT’s with AlGaAs Surface Passivation Layer”, IEEE Electron Device Lett., vol. 11, no. 9, pp. 388-390, Sep. 1990.
[27] H. G. Liu et al., “Emitter-Size Effects and Ultimate Scalability of InP:GaInP/GaAsSb/InP DHBTs”, IEEE Electron Device Lett., vol. 29, no. 6, pp. 546-548, Jun. 2008.
[28] Chai Wah Ng et al., “Surface Recombination in InP/InAlAs/GaAsSb/InP Double Heterojunction Bipolar Transistors,” Proc. IPRM, pp.151-153, 2007.
[29] N. G. Tao et al., “Impact of State modeling on the Characteristics of InGaAsSb/InP DHBTs,” Solid-State-Electron., vol. 51, pp.955-1001, 2007.
[30] Evan Lobisser et al., “200-nm InGaAs/InP Type I DHBT Employing a Dual-Sidewall Emitter Process Demonstrating fmax > 800 GHz and fT = 360 GHz,” Proc. IPRM, pp. 16-19, 2009.
[31] C. Gatzke et al., “In situ Raman Spectroscopy of the Selective Etching of Antimonides in GaAb/AlSb/InAs Heterostructures,” Semicond. Sci. Technol., vol. 13, pp. 399-403, 1998.
[32] Mark Rodwell et al., “Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits, ” IEEE, 2006.
|