博碩士論文 965201047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.12.34.192
姓名 楊昌翰(Cheng-Han Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多層鍺量子點金-氧-半光偵測器之研製
(Fabrication of Multilayer Ge Quantum-Dots MOS Photodetectors)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主題為多層鍺量子點之製備及其在光偵測器上的應用。在高溫退火矽鍺氧合金時,矽會被優先氧化而鍺原子會自氧化物中被釋放出來並埋藏在氧化物與氮氧化矽介面,利用此選擇性氧化可製備出奈米尺寸的鍺量子點,且量子點的尺寸決定於鍺量子點釋放與聚集的機制,我們先利用電漿助長化學氣相沉積系統沉積非晶矽鍺氧/非晶氮氧化矽多層膜,並進行高溫退火處理,以形成包埋於氧化層內的多層鍺量子點。實驗結果顯示對非晶矽鍺氧/非晶氮化矽多層膜進行高溫退火處理後,可得到多層、分佈均勻且尺寸約為2~8奈米的鍺量子點,鍺量子點的結晶性係藉由拉曼光譜量測結果推知。增加非晶氮氧化矽層厚度,可以有效改善各層鍺量子點密度的均勻性。
接著將埋有多層鍺量子點的氧化層製作成金-氧-半MOS結構的光偵測器元件,首先藉由觀察到電容-電壓(C-V)特性的磁滯現象可判斷量子點生成情形及電荷儲存效果,所得到的記憶窗口可達3.39伏特。當埋有多層鍺量子點的氧化層厚度提升時,可有效降低元件暗電流,而得到較高的光/暗電流比值。
當鍺量子點密度較高時,可得到較高的光電流及較好的光響應度,且響應頻譜峰值波長會藍移。另外,在微弱的光訊號下(0.02 mW),鍺量子點密度較高及氧化層厚度較薄的元件可以有效偵測到微弱(0.02 mW)的光訊號。外加偏壓較大或是元件氧化層厚度較薄時,由於較大電場會使光生載子的漂移速度變快而提升元件的響應速度。元件的RC時間常數也對上升下降時間有很大的影響,時間常數越大則上升下降時間會越長,響應頻寬也會越小。
摘要(英) In this thesis, multilayer Ge quantum-dots (QDs) have been fabricated and applied to photodetectors. Since the Si will be preferentially oxidized during the high-temperature annealing of SiGeO alloy and the segregated Ge atom will pile-up along the SiO2/SiON interface, it could be expected that the Ge quantum-dots could be tentatively formed with the Ge atom segregation and agglomeration. The QDs’ size depend on annealing process conditions, including temperature, ambient, and duration. The multilayer a-SiGeO/a-SiON thin-films have been prepared with a plasma-enhanced chemical vapor deposition system, then with a thermal annealing for a-SiGeO/a-SiON thin-films, the multilayer, well-separated, and 2~8 nm-sized Ge QDs were obtained. The crystallinity of Ge quantum-dots has been checked with a Raman spectroscopy. Increasing the thickness of a-SiON was beneficial to the formation of upper Ge QD layer, and a more uniform density of multilayer Ge QDs was obtained.
The metal-oxide-semiconductor (MOS) photodetector (PD) structures with multilayer Ge QDs embedded in oxide have been fabricated. From the obtained C-V hysteresis phenomena, the formation of Ge QDs and their charge storage effects were investigated. The obtainable memory window for MOS structure with multilayer Ge quantum-dots was 3.39 V.
Increasing the oxide thickness was effective to decrease the PD dark current and obtained a higher ratio of hotocurrent to dark current of PD.
A higher density of Ge QDs resulted in a higher photo-current, a better photo responsivity, and a blue-shift of peak response wavelength. Moreover, the amplified responsivity of PDs also can be seen in the spectra. The PD with a higher density of Ge QDs and a thinner oxide thickness could be used to detect the weak (0.02 mW) incident light effectively. By applying a large bias voltage or using a thinner oxide, the larger electric-field in the PD would increase the drift velocity of photo-generated carriers, and the response speed of PD became faster. The effect of device RC constant to rise-time and fall-time was significant. A large RC constant brought about the longer rise-time and fall-time and smaller response bandwidth.
關鍵字(中) ★ 鍺
★ 響應度
★ 電壓-電容
★ 電壓-電流
★ 量子點
★ 拉曼光譜
★ 金氧半光偵測器
關鍵字(英) ★ C-V
★ I-V
★ Quantum-dots
★ Raman
★ responsivity
★ Ge
★ MOS photodetector
論文目次 Contents
Contents.......................................I
Table Captions................................IV
Figure Captions...............................VI
CHAPTER 1 Introduction 1
1.1 General Background 1
1.2 Organization of Thesis 3
CHAPTER 2 Ge Dots Formation and Photodetector Operation
Principles 5
2.1 Motivation 5
2.1.1 Quantum confinement effect [12] 5
2.2 Formation of Ge Dots 7
2.2.1 Selective oxidation of SiGe 7
2.2.2 Thermal annealing of SiGeO 7
2.3 Sturcture of Photodetector 8
2.4 Quantum Efficiency [19] 9
2.5 Responsivity [20] 9
2.6 Response Speed [21] 10
CHAPTER 3 Fabrication Processes and Measurement
Techniques 12
3.1 PECVD System 12
3.2 Device Fabrication 12
3.3 Measurement Techniques 18
3.3.1 Micro-Raman spectroscopy 18
3.3.2 Energy dispersive spectrometer (EDS) 18
3.3.3 Scanning electron microscope (SEM) 19
3.3.4 Transmission electron microscope (TEM) 19
3.3.5 Measurements of electrical characteristics 20
3.3.6 Responsivity 20
3.3.7 Response speed 21
CHAPTER 4 Experiment Results and Discussion 25
4.1 The Characterizations of Ge Quantum-Dots 25
4.1.1 C-V measurement characteristics 25
4.1.2 Scanning electron microscopy (SEM) 34
4.1.3 Micro-Raman spectrum 40
4.1.4 Transmission electron microscopy (TEM) 43
4.2 Photodetectors Based-on Ge Quantum-Dots 48
4.2.1 I-V characteristics 48
4.2.2 Responsivity 58
4.2.3 Response time measurement 65
CHAPTER 5 Conclusion 70
REFERENCES 72
參考文獻 [1] P. J. Wu and J. W. Hong, “Ge Quantum-Dots Formed by Selective Oxidation of a-Si:H/a-SiGe:H Multilayer and Fabrication of Ge Quantum-Dots MSM Photodetectors,” M. S. Thesis, NCU, Taiwan, R.O.C, 2006.
[2] M. J. Sie and C.H. Kuan, “Ge Quantum Dot Infrared Photodetector with Schottky Barrier to Block Dark Current,” M. S. Thesis, NTU, Taiwan, R.O.C, 2003.
[3] J.-Y. Marzin, J.-M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs”, Phys. Rev. Lett., vol. 73, pp. 716, 1994.
[4] D. J. Lockwood, Z. H. Lu and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices”, Phys. Rev. Lett., vol. 76, pp. 539, 1996.
[5]Alexander A. Shklyaev and Masakazu Ichikaw, “Visible
photoluminescence of Ge dots embedded in Si/SiO2 matrices,” Appl. Phys. Lett., vol. 80, pp. 1432, 2002.
[6] Mingziang Wang, Xinfan Huang, Jun Xu, Wei Li, Zhiguo Liu and Kunji Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/SiN superlattices,” Appl. Phys. Lett., vol. 72, pp. 722, 1998.
[7] G. Allan, C. Delerue, and M Lannoo, “Nature of luminescent surface states of semiconductor nanocrystallites,” Phys. Rev. Lett., vol. 72, pp. 2961, 1996.
[8] H. Rinnert, M. Vergnat, and A. Burneau “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. vol. 89, pp. 237-243, 2001.
[9] J. L. Liu, W. G. Wu, A. Balandin, G. Jin, Y. H. Luo, S. G. Thomas, Y. Lu, and K.L. Wang, “Observation of inter-sub-level transitions in modulation-doped Ge quantum dots” Appl. Phys. Lett., vol. 75, pp. 1745- 1747, 1999.
[10] Mukai, K., Ohtsuka, N., Shoji, H., and Sugawara, M., “Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck”, Appl. Phys. Lett., vol. 68, pp. 3013-3015, 1996.
[11] H. C. Liu, M. Buchhanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?,” Appl. Phys. Lett., vol. 72, pp. 1682-1684, 1988.
[12] Jasprit Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” chap 3, pp. 125-127, 2003.
[13] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. –J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett. vol. 83, p. 4628, 2003.
[14] M. Zacharias, R. Weigand et al, “A comparative study of Ge nanostals in SixGeyOz alloys and SiOx/GeOy multilayers,” J. Appl. Phys. vol. 81, pp. 2384-2390, 1997.
[15] Achyut Kumar, “Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 68, pp. 1189-1191, 1996.
[16] W. R. Chen, T. C. Chang et al, “Formation of Ge nanocrystals using Si1.33Ge0.67O2 and Si2.67Ge1.33N2 film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, article. 102106, 2007.
[17] A. Dana*, S. Agan, S. Tokay, A. Aydinli, T. G. Finstad, “Raman and TEM studies of Ge nanocrystal formation in SiOx:Ge/SiOx multilayers,” Phys. Stat. Sol., vol. 2, pp. 288-291, 2007.
[18] D. A. Neamen, “Semiconductor Physics and Device,” McGRAW. HILL, Inc., 3rd ed, Chap 11, pp. 449, 2006.
[19] Z. W. Jiang and Y. Chang, “The Fabrication of Ge p-i-n and GaAs M-S-M Photodetectors on Si Substrate,” M. S. Thesis, NCTU, Taiwan, R.O.C, 2005.
[20] D. S. Tsai and S. L. Yang, “Fabrication and Optoelectronic Characterization of Planar and Recessed-Electrode GaN Metal-Semiconductor-Metal Photodetectors,” M. S. Thesis, NCTU, Taiwan, R.O.C, 2005.
[21] D. H. Austun, “Ultrafast Laser Pulse and Applications,” edited by W. Kalser, Berlin, pp. 183, 1988.
[22] S. K. Ray*, K. Das, “Luminescence characteristics of Ge nanocrystals embedded in SiO2,” Optical. Materials., vol. 27, pp. 948-952, 2005.
[23] M. Kanoun, A. Souifi, T. Baron, F. Mazen, “Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications,” Appl. Phys. Lett., vol. 84, pp. 5079-5081, 2004.
[24] S. H. Hsu and P. W. Li, ”Fabrication and carrier transport mechanism of nonvolatile germanium quantum dots imbedded in oxide-nitride composite tunnel dielectric MOS-capacitors,” M. S. Thesis, NCU, Taiwan, R.O.C, 2008.
[25] J. H. Wu and P. W. Li, ”Ge nanocrystal metal-oxide semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semicond. Sci. Technol. vol. 22, S89-S92, 2007.
[26] M. Kanoun, T. Baron, E. Gautier, A. Souifi, “Charging effects in Ge nanocrystals embedded in SiO2 matrix for non volatile memory applications,” Materials Science and Engineering C, vol. 26, pp. 360-363, 2006.
[27] B. De Salvo, G. Ghibaudo, P. Luthereau, T. Baron, B. Guillaumot, G. Reimbold, “Transport mechanisms and charge trapping in thin dielectric/Si nano-crystals structures,” Solid-State Electronics, vol. 45, pp. 1513-1519, 2001.
[28] D. N. Kouvatsos, V. loannou-Sougleridis, A. G. Nassiopoulou, “Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing,” Appl. Phys. Lett., vol. 82, pp. 397, 2003.
[29] H. C. Liu and Federico Capasso, “Intersubband Transitions in Quantum Wells: Physics and Device Application I .V62,” CA :Academic, San Diego, 2000.
[30] P. W. Li, M. T. Kuo, W. M. Liao, and M. J. Tsai, “Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator,” J. Appl. Phys. vol. 43, pp. 7788-7792, 2004.
[31] W. T. Lai and P. W. Li, “Growth kinetics and related physical / electrical properties of Ge quantum dots formed by thermal oxidation of Si1−x Gex -on-insulator,” Nanotechnology, vol. 18, pp. 145402, 2007.
[32] Rodr´ıguez A, Ortiz M I, Sangrador J, Rodr´ıguez T, Avella M, Prieto A C, Torres A´ , Jime´nez J, Kling A and Ballesteros C, “Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films,” Nanotechnology, vol. 18, pp. 065702, 2007.
[33] S. H. Choi and R. G. Elliman, “Negative photoconductivity in SiO2 films containing Si nanocrystals,”1999 Appl. Phys. Lett., vol. 74, pp. 3987, 1999.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明