博碩士論文 965201054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.128.200.165
姓名 余湘璘(Hsiang-Lin Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析
(Effect of Layer Structure and Passivation on High Frequency and High Power Characteristics in AlGaN/GaN HEMTs)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鋁鎵/氮化鎵高速電子遷移率場效電晶體(AlGaN/GaN HEMT),由於擁有卓越的載子傳輸特性,因此常被應用在高功率、高溫度以及高頻率的電路操作中。如何最佳化元件結構以及鈍化製程發展即為此篇論文的重點敘述。
在最佳化元件結構部份,我們探討不同元件結構對於元件特性的影響,包括堀入式閘極、高掺雜表面層於歐姆接點及低串聯寄生電阻結構-搭配發展出電子束微影製程,驗證了AlGaN/GaN HEMT次微米元件優異之微波功率性能,在高頻特性部分,電流增益截止頻率(fT)與閘極長度(LG)的乘積可以高達20 GHz-um。
在元件鈍化層製程的最佳化部份,我們提出一種可同時成功提昇元件高頻及功率特性的鈍化層覆蓋方式,在移除高摻雜層後馬上覆蓋鈍化層Si3N4或是SiO2,相較於傳統方式鈍化之元件,明顯改善了元件表面與鈍化層介面特性,成功抑制缺陷效應所造成的電流侷限。
就功率元件因為基板散熱不佳而造成自我發熱的問題,我們利用不同閘極寬度並聯大功率元件,從電性上退化的探討證明散熱對於高功率元件的重要性,並利用紅外線熱影像分析了元件操作時表面溫度的分布。
摘要(英) AlGaN/GaN HEMTs have attracted great interest for high-power, high-temperature, and high-frequency applications because of their superior carrier transport properties. This thesis focuses on optimization of device structure and passivation process, and their correlation with device performance.
Based on the same epitaxy materials, we investigated the effect of different Al0.26Ga0.74N/GaN HEMT device structure on DC and RF performance. Results show that n+-GaN cap kept under ohmic metals for lowering contact resistance, an appropriate gate recess depth for improving charge modulation capability, and cap removal in device access region for miminizing source resistance are determined as best structure for achiving highest frequency performance. Improved speed performance in both micron and submicron devices were demonstrated. A 0.5 um T-gate device yielded a high fT×LG product of 20 GHz-um.
Plus, we reported the fabrication of AlGaN/GaN HEMT with improved DC, high frequency and microwave power performances by employing an alternative passivation approach. A pretreated AlGaN surface is provided by dry etching n+-GaN cap layer and RTA annealing ohmic contacts right before Si3N4 or SiO2 passivant was deposited. Pulsed I-V characteristics show that the pseudo in-situ passivation process successfully eliminates trapping effect at Si3N4 or SiO2 and AlGaN interface which is considered to be the important factor for the performance enhancement. The issues of the drain current collapse and the power degradation induced by the surface traps are also successfully improved.
As for the issue of self heating, power devices with different layouts are addressed. Thermal IR microscopy was used to detect the device surface temperatures under various dc power consumptions.
關鍵字(中) ★ 氮化鋁鎵
★ 氮化鎵
★ 高電子遷移率場效電晶體
★ 鈍化層
★ 堀入式閘極
關鍵字(英) ★ High power
★ Passivation
★ Recessed Gate
★ HEMT
★ AlGaN/GaN
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1.1 GaN材料特性及發展趨勢 1
1.1.1 AlGaN/GaN HEMT市場發展與應用 1
1.1.2 優越的材料特性 3
1.2 研究動機 13
1.2.1 AlGaN/GaN HEMTs元件結構簡介與發展 13
1.2.2 AlGaN/GaN HEMT鈍化層發展 14
1.3論文架構 15
第二章AlGaN/GaN HEMTs 材料分析與製程 16
2.1 AlGaN/GaN HEMTs 材料分析與製程簡介 16
2.2 AlGaN/GaN磊晶結構材料分析 16
2.2.1磊晶材料分析 17
2.3 AlGaN/GaN元件製作流程 19
2.3.1 堀入式閘極AlGaN/GaN HEMTs 20
2.3.2 AlGaN/GaN HEMT 鈍化層之研發製作 21
2.3.3 AlGaN/GaN HEMTs 功率元件 24
第三章AlGaN/GaN HEMTs量測特性結果比較 27
3.1 AlGaN/GaN HEMTs量測特性簡介 27
3.2 堀入式閘極AlGaN/GaN HEMTs 27
3.2.1表面結構特性分析 27
3.2.2 直流特性分析 30
3.2.3崩潰電壓特性分析 33
3.2.4 高頻特性分析 35
3.2.5 功率特性分析 36
3.3 GaN/AlGaN/GaN HEMTs 元件特性分析 38
3.3.1 GaN/AlGaN/GaN HEMTs簡介 38
3.3.2 GaN覆蓋層特性表現 39
3.3.3崩潰電壓特性分析 42
3.3.4高頻特性分析 43
3.3.5功率特性分析 44
3.4 小線寬堀入式閘極之AlGaN/GaN HEMTs 元件特性分析 45
3.4.1 小線寬堀入式閘極之AlGaN/GaN HEMTs 簡介 45
3.4.2小線寬堀入式閘極之 AlGaN/GaN HEMTs製作方式 45
3.4.3直流特性分析 47
3.4.4高頻特性分析 48
3.5 AlGaN/GaN HEMT鈍化層的發展 53
3.5.1 AlGaN/GaN HEMT 鈍化層簡介 53
3.5.2 直流特性分析 53
3.5.3 高頻特性分析 59
3.6 功率AlGaN/GaN HEMTs 66
3.6.1功率AlGaN/GaN HEMTs簡介 66
3.6.2直流特性分析 67
3.6.3 高頻特性分析 69
3.6.4 熱影像特性分析 70
第四章 AlGaN/GaN HEMTs結構特性探討與比較 73
4.1 AlGaN/GaN HEMTs結構特性探討簡介 73
4.2 汲極電流開關比與次臨限斜率特性分析 73
4.2.1 汲極電流開關比與次臨限斜率簡介 73
4.2.2 堀入式閘極 AlGaN/GaN HEMTs 74
4.2.3 鈍化之AlGaN/GaN HEMTs 76
4.3 閘極漏電流機構 78
4.3.1閘極漏電流機構簡介 78
4.3.2 AlGaN/GaN HEMT特性 78
4.4 衝擊離化對AlGaN/GaN HEMTs 之影響 81
4.4.1 AlGaN/GaN HEMTs 衝擊離化效應簡介 81
4.4.2 AlGaN/GaN HEMT特性 82
4.4.3 鈍化AlGaN/GaN HEMT特性 83
4.5 缺陷對AlGaN/GaN HEMTs之影響 85
4.5.1 AlGaN/GaN HEMTs之缺陷效應簡介 85
4.5.2 脈波電流–電壓量測系統架設方法 86
4.5.3 鈍化層對表面缺陷效應的影響 88
4.6 電容–電壓特性量測 93
4.6.1 AlGaN/GaN HEMTs 之電容–電壓特性簡介 93
4.6.2 鈍化之AlGaN/GaN HEMTs電容-電壓特性 94
4.6.3 表面態對電容-電壓特性的影響 96
第五章 結論與未來發展 98
5.1結論 98
5.2未來發展 99
【參考文獻】 101
附錄 106
AlGaN/GaN HEMT 製作流程 106
堀入式閘極AlGaN/GaN HEMT 106
雙層鈍化層之AlGaN/GaN HEMT 109
功率AlGaN/GaN HEMT 113
參考文獻 [1] U.K. Mishra , P. Parikh, Y.F. Wu,” AlGaN/GaN HEMTs: An overview of device operation and applications,” Proceedings of the IEEE, vol. 90, pp. 1-16, 2002.
[2] M. A. Khan, J. N. Kuznia, A. Bhattarai and D. T. Olson, “Metal Semiconductor Field Effect Transistor on single crystal GaN,” Appl. Phys. Lett, vol. 62, pp. 1786-1787, 1986.
[3] Lester F. Eastman and U.K. Mishra, “The toughest transistor yet [GaN transistors],” IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002.
[4] Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN
Heterojunction Modulation Doped FETs,” IEEE Transactions on electron devices, vol. 48,
pp. 450-457, 2001.
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman,” Two-dimensional electron gases induced by spontaneous and
piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, pp. 334-344, 1999.
[6] S. R. Lee, D. D. Koleske, K. C. Cross, J. A. Floro, and K. E. Waldrip Sandia, “In situ measurements of the critical thickness for strain relaxation in AlGaN/GaN
heterostructures,” Appl. Phys. Lett, vol. 85, pp. 6164-6166, 2004.
[7] Jane J. Xu, Stacia Keller, Gia Parish, Sten Heikman, Umesh K. Mishra, and Robert A. York, “A 3–10-GHz GaN-Based Flip-Chip Integrated Broad-Band Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques,vol. 48, pp. 3573-2578, 2000.
[8] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P Keller, and U. K. Mishra, “Very –high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48,
pp. 586-590, 2001.
[9] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Letter, vol. 20, pp. 161-163, 1999.
[10] O. Mitrofanov, M. Manfra, N. Weimann, “Impact of Si doping on radiofrequency dispersion in unpassivated GaN/AlGaN/GaN high-electron-mobility transistors grown by plasma-assisted molecular-beamepitaxy,” Appl. Phys. Lett, vol. 82, pp. 4361–4363, 2003.
[11] J. Berna´t, M. Wolter, A. Fox, M. Marso, J. Flynn, G. Brandes,P. Kordosˇ, “Impact of layer structure on performance of unpassivated AlGaN/GaN/SiC HEMTs,” IEEE Electron Lett. vol. 40, pp. 78–79, 2004.
[12] L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S.P. DenBaars, U.K. Mishra, “UnpassivatedGaN/AlGaN/GaN Power High Electron Mobility Transistors with Dispersion Controlled by Epitaxial Layer Design,” Journal of Electron Material, vol. 33, pp. 422–425, 2004.
[13] Y. Nakasha, M. Nagahara, Y. Tateno, H. Takahashi, T. Igarashi, K.Joshin, J. Fukaja, and
M. Takikawa, “A low-distortion high-efficiency E-mode GaAs power FET based on a
new method to improve device linearity focused on g value,” in IEDM Tech. Dig.,
pp. 405–408, 1999.
[14] A. Chini, D. Buttari, R. Coffie, L. Shen, S. Heikman, S. Keller, and U. K. Mishra.
“Effect of gate recessing on linearity characteristics of AlGaN–GaN HEMTs,” in
Proc. Device Research Conf, vol. 1, pp.33-34, 2004.
[15] Wataru Saito, Yoshiharu Takada, Masahiko Kuraguchi, Kunio Tsuda, and Ichiro Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Transactions on Electron Devices, vol. 53, pp. 356-362, 2006.
[16] Nidhi, T. Palacios, A. Chakraborty, S. Keller, and U. K. Mishra “Study of impact of
access resistance on high-frequency performance of AlGaN/GaN HEMTs by measurements at low temperatures,” IEEE Electron Device Letters, vol. 27, pp. 877-880, 2006.
[17] W. K. Wang, P. C. Lin, C. H. Lin, C. K. Lin, Y. J. Chan, G. T. Chen, and J. I. Chyi
“Performance enhancement by using the n+-GaN cap layer and gate recess technology on
the AlGaN-GaN HEMT fabrication,” IEEE Electron Device Letters, vol. 26, pp. 5-7,
2005.
[18] S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN Heterostructures,” Journal of Applied Physics, vol. 93, pp. 10114-10118, 2003.
[19] Binari SC, Kruppa W, Dietrich HB, Kelner G, Wickenden AE, Freitas JA. “Fabrication and characterization of GaN FETs,” Solid-State Electron, vol. 41, pp. 1549-1554, 1997.
[20] Trassaert S, Boudart B, Gaquiere C, Theron D, Crosnier Y, Huet F, et al. “Trap effects studies in GaN MESFETs by pulsed measurements”. Electron Letter, vol. 35, pp. 1386–1388, 1999.
[21] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN High-electron-mobility transistors with SiO2, Si3N4 , and silicon oxynitride” Applied Physics Letters, vol. 84, pp. 613-615, 2004.
[22] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, P. Kordos, “Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs,” Solid-State Electronics, vol. 47, pp. 2097–2103, 2003.
[23] Wen-KaiWang, Ching-Huao Lin, Po-Chen Lin, Cheng-Kuo Lin, Fan-Hsiu Huang, Yi-Jen Chan, Guan-Ting Chen, and Jen-Inn Chyi, “Low-BCB Passivation on AlGaN–GaN HEMT Fabrication”IEEE Electron Devices Letters, vol. 25, pp. 763-765, 2004.
[24] Masataka Higashiwaki, Takashi Mimura and Toshiaki Matsui,”AlN/GaN Insulated-Gate HFETs Using Cat-CVD SiN,” IEEE Electron Devices Letters, vol. 27, pp. 719-721, 2006.
[25] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol. 50, pp. 1057–1061, 2006.
[26] Kai Chenga, M. Leysa, J. Derluyna, S. Degrootea, D.P. Xiao, A. Lorenza, S. Boeykensa, M. Germaina, G. Borghsa, “AlGaN/GaN HEMT grown on large size silicon substrates by MOVPE capped with in-situ deposited Si3N4, ” Journal of Crystal Growth, vol.298, pp. 822–825, 2007.
[27] F. Sacconi, A.D. Carlo, P. Lugli, and Hadis Morkoç,” Spontaneous and Piezoelectric
Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction
Modulation Doped FETs,” IEEE Transactions on Electron Devices, vol. 48, pp. 450-457, 2001.
[28] S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. Denbaars, and U. K. Mishra,
“Polarization effects in AlGaN-GaN and GaN-AlGaN-GaN heterostructures,” J. Appl.
Phys, vol. 93, pp. 10114-10118, 2003.
[29] Jinwook Burm I, William J. Schaff I, Glenn H. Martin I, Lester F. Eastman I, Hiroshi
Amano and Isamu Akasakf “Recessed Gate GaN MODFETs,” Solid-State Electronics,
vol. 41, pp. 247-250, 1997.
[30] Y. Cai et al., “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion to enhancement mode,” IEEE Transactions on Electron Devices, vol. 53, pp. 2207–2215, 2006.
[31] J . B. Boos and W. Kruppa, “InAlAs/InGaAs/InP HEMT’s with high breakdown voltages using double-recess gate process,” Electron. Lett., vol. 27, pp. 1909-1910, 1991.
[32] Y. Nakasha, M. Nagahara, Y. Tateno, H. Takahashi, T. Igarashi, K.Joshin, J. Fukaja, and M. Takikawa, “A low-distortion high-efficiency E-mode GaAs power FET based on a new method to improve device linearity focused on g value,” in IEDM Tech. Dig., vol. 1, pp.405–408, 1999.
[33] P. Kordos,J. Berna´t,M. Marsoc, “Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT,” Microelectronics Journal, vol. 36, pp. 438–441, 2005.
[34] Eduardo M. Chumbes, “AlGaN/GaN High Electron Mobility Transistors on Si (111)
Substrates, ”IEEE Transactions on Electron Devices, vol. 48, pp. 420-426, 2001.
[35] S. J. Kim, J. Y. Shim, J. H. Lee, H. S. Yoon and K. H. Lee. “DC and RF Performance
Characterization of a 0.2-μm T-Gate GaN/AlGaN Heterostructure Field-Effect Transistors
with n+-AlGaN Cap Layers,” Journal of the Korean Physical Society, vol. 42, pp. 276-280, 2003.
[36] Bruce M. Green, Kenneth K. Chu, E. Martin Chumbes,Joseph A. Smart, James R. Shealy, and Lester F. Eastman, “The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMTs,” IEEE Electron Devices Letters, vol. 21, pp. 268-270, 2000.
[37] B.Boudart, C.Gaquiere, Y. Guhel, J.C. dc Jaeger, and M. A. Poisson, “Electrical effect of SiNx deposition on GaN MESFETs,” IEEE Electron Devices Letters, vol. 37, pp. 527-528, 2001.
[38] R A Davies, D J Bazley, S K Jones, H A Lovekin, W A Phillips, R H Wallis, J C Birbeck, T Martin, and M J Uren, “The gate-length dependent performance of AlGaN/GaN HFETs with silicon nitride passivation,” Proceedings of the 8th IEEE International Symposium on High Performance EDMO, vol. 76, 2000.
[39] X. Z. Dang, E.T. Yu, E. J. Piner and B.T McDermott, “Influence of surface processing and passivation on carrier concentrations and transport properties in AlGaN/GaN heterostructures,“ Journal of Applied Physics, vol. 90, pp 1357-1361, 2001.
[40] Jaesun Lee, Dongmin Liu, Hyeongnam Kim, Wu Lu,”Post-annealing effects on device performance of AlGaN/GaN HFETs,” Solid-State Electronics, vol. 48, pp. 1855–1859, 2004.
[41] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s” IEEE Electron Device Letters, vol. 19, pp. 89-91, 1998.
[42] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S.Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC substrate,” IEEE
Electron Device Letter, vol. 18, pp. 492–494, 1997.
[43] Peter Javorka aus Bratislava, Slowakei, “Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors” Ph.D. dissertation, Berichter University, 2004
[44] C. Sanabria, A. Chakraborty, H. Xu, M. J. Rodwell, U. K. Mishra, and R. A. York, “The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs,” IEEE Electron Device Letter, vol. 27, pp. 19–21, 2006.
[45] W. Lu, J. Yang, A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Transactions on Electron Devices, vol. 48, pp. 581–585, 2001.
[46] V. Kumar, W. Lu, F. A. Khan, R. Schwindt, A. Kuliev, J. Yang, and M. A. Khan, “High performance 0.15 μm recessed gate AlGaN/GaN HEMTs on sapphire,” in IEDM Tech. Dig., pp. 573–576, 2001.
[47] X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros, and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AlGaN/GaN HFET,” IEEE Electron Letter, vol. 35, pp. 602-603, 1999.
[48] W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse. “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett, vol. 80, pp. 3207-3209, 2002.
[49] E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” Journal of Applied Physics, vol. 88, pp. 5951-5958, 2000.
[50] M. H. Somerville, A. Ernst, and J. A. del Alamo, “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 547, pp. 922–930, 2000.
[51] J. Haruyama, H. Negishi, Y. Nishimura, and Y. Nashimoto, “Substraterelated kink effects with a strong light-sensitivity in AlGaAs/InGaAs PHEMTs,” IEEE Transactions on Electron Devices, vol. 44, pp. 25–33, 1997.
[52] A. Mazzanti, G. Verzellesi, C. Canali, G. Meneghesso, and E. Zanoni, “Physics-based explanation of kink dynamics in AlGaAs/GaAs HFETs,” IEEE Electron Device Letter, vol. 23, pp. 383–385, 2002.
[53] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 49, pp. 1694–1700, 2002.
[54] G. Meneghesso, B. Cogliati, G. Donzelli, D. Sala, and E. Zanoni, “Development of ‘kink’ in the output I–V characteristics of pseudomorphic HEMTs after hot-electron accelerated aging,” Microelectronics and Reliability, vol. 37, pp. 1679–1682, 1997.
[55] B.Brar, K. Boutros, R. E. DeWames,“Impact Ionization in high performance AlGaN/GaN HEMTs”, High Performance Devices, Proceedings, IEEE Lester Eastman Conference, pp. 487-491, 2002.
[56] S. T. Bradley, A. P. Young, L. J. Brillson, M. J. Murphy, W. J.Schaff, and L. F. Eastman, “Influence of AlGaN deep level defects on AlGaN/GaN 2DEG carrier confinement,”
IEEE Transactions on Electron Devices, vol. 48, pp. 412–415, 2001.
[57] H Xing, S Keller, Y-F Wu, L McCarthy, I P Smorchkova, D Buttari1,R Coffie, D S Green, G Parish, S Heikman, L Shen, N Zhang,J J Xu, B P Keller, S P DenBaars and U K Mishra, “Gallium nitride based transistors” Institute of Physics Publishing Journal of Physics, vol. 13, pp. 7139–7157, 2001.
[58] L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S. P. DenBaars, and U. K. Mishra, “Unpassivated GaN/AlGaN/GaN Power High Electron Mobility Transistors with Dispersion Controlled by Epitaxial Layer Design,” Journal of Electronic Materials, vol. 33, pp. 422-425, 2004.
[59] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4 and silicon oxynitride,” Appl. Phys. Letter, vol. 84, pp. 613-615, 2004.
[60] Ha, M.-W., Lee, S.-C., Park, J.-H., Her, J.-C., Seo, K.-S., and Han, M.-K, “Silicon Dioxide Passivation of AlGaN/GaN HEMTs for High Breakdown Voltage”, Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC's June 4-8, Naples, Italy, 2006.
[61] E. J. Miller, X. Z. Dang, H. H. Wieder, P. M. Asbeck, E. T. Yu, G. J. Sullivan, and J. M. Redwing, “Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field-effect transistor,” Journal of Applied Physics, vol. 87, pp. 8070-8073, 2000.
指導教授 詹益仁、林恒光
(Yi-Jen Chan、Heng-Kuang Lin)
審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明