博碩士論文 965201065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.149.247.101
姓名 徐濬宇(Chun-Yu Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用氫氣與氬氣稀釋法沉積的非晶矽及非晶矽鍺薄膜改善非晶質矽基太陽電池的特性
(Using a-Si:H and a-SiGe:H Thin-Films Deposited with Hydrogen and Argon Dilution Technique To Improve Performances of Amorphous Silicon Based Solar Cells)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主要目的是利用氫氣與氬氣稀釋的技巧沉積光電特性較優良的非晶矽及非晶矽鍺薄膜,並據以改善非晶質矽基太陽電池的特性。
首先,我們探討氬氣稀釋對非晶矽太陽電池特性的影響。以前的許多研究結果顯示,利用高氫氣稀釋比例的電漿助長化學氣相沉積(PECVD)方法可改善非晶矽薄膜的穩定性。然而大量氫氣源氣體矽烷(SiH4)混合物是有相當的危險性。相較之下,利用氬氣稀釋法是比較安全的。這是研究與採用氬氣稀釋法的主要原因。本實驗研究結果顯示利用氬氣稀釋法沉積的非晶矽薄膜具有較佳的光吸收特性,且利用氬氣稀釋法研製的非晶矽太陽電池亦具有較高的短路電流。
接著我們探討氫氣稀釋,氬氣稀釋及調整源氣體鍺烷(GeH4)的流量對非晶質薄膜光電特性的影響,改善非晶矽鍺薄膜的吸光率,並且提高含非晶矽鍺薄膜之太陽電池的短路電流。
最後,我們使用改良後的非晶矽和非晶矽鍺薄膜的製程來研製梯度能階的非晶質矽基太陽電池。此太陽電池的轉換效率可達到百分之 1.58。
摘要(英) In this thesis, the hydrogen and argon dilution technique was employed to deposit the a-Si:H and a-SiGe:H films with better optoelectronic characteristics, and then these thin-films were used to improve the photovoltaic parameters of amorphous silicon based solar cells.
First, the process conditions for depositing a-Si:H films with argon dilution of silane (4% in H2) were studied. Researches to improve stability of hydrogenated amorphous silicon (a-Si:H) thin films deposited with a plasma-enhanced chemical vapor deposition (PECVD) system and to increase the conversion efficiency of solar cells have led to the use of highly diluted silane in hydrogen . However, the hydrogen–silane mixture is quite dangerous and the advantage of argon dilution of silane lies in the fact that it is a much safer process. That is why the possibility to obtain stable and device grade thin-films using argon dilution of silane has been investigated. In this study, we found that the absorptance spectrum of i-a-Si:H deposited with argon dilution technique was better than that of the one without argon dilution, and the a-Si:H p-i-n solar cell fabricated with argon dilution technique had higher short-circuit current density(Jsc).
Then, the effects of hydrogen dilution, argon dilution and GeH4 gas flow-rate on the properties of amorphous films were investigated. The absorptance spectrum of i-a-SiGe:H thin-film was improved also. The (Jsc) for amorphous p(Si)-i(SiGe)-n(Si) solar cell fabricated with the developed technique was increased also.
Finally, these better i-a-Si:H and i-a-SiGe:H films deposition process conditions for i-a-Si:H and i-a-SiGe:H films were used to fabricate graded gap amorphous silicon based solar cells. The solar cell had an obtainable conversion efficiency = 1.58 % under AM 1.5 illumination.
關鍵字(中) ★ 利用氫氣與氬氣稀釋 關鍵字(英) ★ Hydrogen and Argon Dilution
論文目次 Table Captions……………………………………………………………... VI
Figure Captions…………………………………………………………... VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 DEVICE OPERATION PRINCIPLES 4
2.1 Basic principles of solar cell [14] 4
2.2 Fundamental parameters of solar cell [15] 7
2.3 Ohmic resistance in real solar cell [16] 10
CHAPTER 3 DEVICE FABRICATION AND MEASUREMENT TECHNIQUES 12
3.1 Preparations of various amorphous films [17] 12
3.1.1 Deposition system 12
3.1.2 Depositions of a-SiN:H ,a-SiC:H , a-SiGe:H and a-Si:H films 14
3.2 Device synopsis 21
3.3 Plasma treatment for graded solar cell 29
3.4 Device fabrication for graded solar cell 30
3.5 Measurement techniques 32
3.5.1 Optical-gap of amorphous film [23] 32
3.5.2 Dark and photo I-V measurements 32
3.6 Effects of argon dilution on the structure of a-Si:H p-i-n solar cell . 35
3.7 Effects of a-SiGe:H layer on solar cell 35
CHAPTER 4 RESULTS AND DISCUSSION 37
4.1 Argon dilution of silane (4% in H2) for a-Si:H thin film solar cell .. 37
4.2 Fabrication of highly photosensitive a-SiGe:H 41
4.3 Fabrication for graded solar cell 48
CHAPTER 5 CONCLUSION 50
REFERENCES 51
參考文獻 [1] W. E. Spear and P. G. LeComber, “Substitutional doping of amorphous silicon,” Solid State Commun., Vol. 17, p.1193, 1975.
[2] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., Vol. 28, pp.671-673, 1975.
[3] Mitchell, K. W., D. Tanner, S. Vasquez, D. Willet, and S. Lewis, “Device characterization and analysis of thin-film silicon hydrogen solar cells,” Proc. 18th IEEE Photovoltaic Specialists Conf., pp.914-919, 1985.
[4] A. Madan, J. McGill, W. Czubatyj, J. Yang, and S. R. Ovshinsky, “Metal-insulator-semiconductor solar cells using amorphous Si:F:H alloys,” Appl. Phys. Lett., Vol. 37, pp.826-828, 1980.
[5] J. J. Hanak, “Stacked solar cells of amorphous silicon,” J. Non-Cryst. Solids , vol. 35, p. 755, 1980.
[6] X. Deng,“Optimization of a-SiGe based triple, tandem and single-junction solar cells,”Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, p. 1365, 2005.
[7] S. Moriuchi, Y. Inoue, H. Sannomiya, A. Yokota, M. Itoh, Y. Nakata, and H. Itoh,“High reliability three-stacked amorphous-silicon solar cell,”Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, vol. 2, p. 1449, 1990.
[8] X. Zhongyang, Z. Xuecheng, Z. Xuemei, Z. Bofang, and W. Changan,“Optimum design and preparation of a-Si/a-Si/a-SiGe triple-junctionsolar cells,” J. Appl. Phys., vol. 75, no.1 , 1994.
[9] X. YQ, A. Mahan , L. Gedvilas , R. Reedy and H. M. Branz ,“Deposition of photosensitive hydrogenated amorphous silicon-germanium films with a tantalum hot wire,”Thin Solid Films ,vol. 501, p. 198, 2006.
[10] S. Guha, X. Xu, J. Yang, and A. Banerjee,“High deposition rate amorphous silicon-based multijunction solar cell,”Appl. Phys. Lett., vol. 66, p. 5, 1995.
[11] Jun Xu , Kazutoshi Shiba , Seiichi Miyazaki a, Masataka Hirose, Kunji Chen and Duan Feng,“Device-grade a-SiGe:H alloys prepared by nanometer deposition/H2 plasma annealing method,” J. Non-Cryst. Solids vol. 198, p. 582 , 1996.
[12] V. L. Dalal, “Growth chemistry of amorphous silicon and amorphous silicon–germanium alloys,” Current Opinion in Solid State and Materials Science, vol. 6, p.455, 2002.
[13] M.S. Abo Ghazala,“Composition and electronic properties of a-SiGe : H alloys produced from ultrathin layers of a-Si : H/a-Ge : H,” Physica B, vol. 293, p. 132, 2000.
[14] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C., 2005.
[15] 莊嘉琛,“太陽能工程. 太陽電池篇,”全華圖書,(1997).
[16] A. Goetzberger, J. Knobloch and B. Voss, Crystalline Silcon Solar Cells, John Wiley & Sons, Inc., Chap 5, p.79, 1988.
[17] T. C. Chung, “Opoelectronic characteristics of green-blue-white a-SiN:H-based p-i-n thin film emitting diodes (TFLEDs),” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
[18] D. C. Chung, ”Optoelectronic Characteristics of Green-Blue-White a-SiN:H-based p-i-n Thin-Film Light-Emitting Diodes,” M. S.Thesis, NCU, Taiwan, R.O.C., 1998.
[19] Ginn-Hong Chen “Design and Fabrication of Alternating Current a-SiC:H Thin-film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 2005.
[20] J. C. Wang, “Improving the characteristics of amorphous metal semiconductor-metal photodetectors (MSM-PDs),” M. S. Thesis, NCU, Taiwan, R.O.C., 1996.
[21] Ruud E.I. Schropp and Miro Zeman, Amorphous and Microcrystalline Silicon Solar Cells, Kluwer Academic Publishers, 1998.
[22] R. A. C. M. M. van Swaaij, M. Zeman, S. Arnoult, and J. W.Metselaar, “Performance dependence on grading width of a-SiGe:H component solar cells,” Proc. 28th IEEE Photovoltaic Specialists Conf., pp. 869-872, 2000.
[23] T. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 2006.
[24] J. Tauc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, p. 175, 1974.
[25] Jin-Jhan Jheng,“p-i-n solar cell with composition-graded amorphous silicon-alloy layers,”M. S. Thesis, NCU, Taiwan, R.O.C., 2007.
[26] M.A. Martı´nez , M.T. Gutie´rrez and C. Maffiotte,“Chemical changes of ITO/p and ZnO/p interfaces as a function of deposition parameters,” Surface and Coatings Technology, vol. 110, p. 68, 1998.
[27] F. Sánchez-Sinencio and Richard Williams,“Barrier at the interface between amorphous silicon and transparent conducting oxides and its influence on solar cell performance,” J. Appl. Phys., vol. 54, p. 2757, 1983.
[28] E. Centurioni and D. Iencinella, “Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance,” IEEE Electron Device Lett., vol. 24 , p. 177, 2003.
[29] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, “Surface Electronic Structure of Plasma-Treated Indium Tin Oxides,” Appl. Phys. Lett., vol. 78, p. 2595, 2001.
[30] D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31 pp.292 (1977).
[31] R.A. Street (Ed.), Technology and Application of Amorphous Silicon, Springer, Berlin, 1999.
[32] P. Alpuim, V. Chu, J.P. Conde, Thin-Film Transistors On Pet At 100℃ J. Appl. Phys. 86 pp.3812 (1999).
[33] J.C. Knights, R.A. Lujan, Microstructure of plasma-deposited a-Si:H films Appl. Phys. Lett. 35 pp. 244 (1979).
[34] D. Das, M. Jana, A.K. Barua, Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma, J. Appl. Phys. 89 pp.3041 (2001).
[35] M. Jana, D. Das, A.K. Barua, Role of hydrogen in controlling the growth of µc-Si:H films from argon diluted SiH4 plasma, J. Appl. Phys. 91 pp.5442 (2002).
[36] J. Yang, A. Banejee, T. Glatfelter, K. Hoffman, X. Xu and S. Guha, ’Correlation of component cells with high efficiency amorphous silicon alloy triple junction solar cells and modules”. Proc. 1” world Conf. on Photovoltaic Energy Convention pp.387-390 (Waikoloa. 1994).
[37] P. Wickboldt. D. Pan, W. Paul, J. H. Chen, F. Zhong. J. D. Cohen, Y Chen and D. L. Williamson, ‘Improved a-SiGe,.,Gex:H of large x deposited by PECVD”. J. Non-Cryst. Solids, 198-200, pp.567-571, 1996.
[38] A.Matsuda and G. Ganguly. ‘Improvement of hydrogenated amorphous silicon germanium alloys using low power disilane-germane discharges without hydrogen dilution”, Appl. Phys. Lett., 67 pp. 1274-1276, 1995.
[39] J. Yang, X. Xu and S. Guha, in Amorphous Silicon Technology—1994, edited by E. A. Schiff et al. MRS Proc. 336, 687 (1994).
[40] S. Guha, K. L. Narasimhan, S. M. Pietruszko, “On light-induced
effect in amorphous hydrogenated silicon,” J. Appl. Phys., Vol. 52,
pp.859-860, 1981.
[41] R.R. Arya, J.L. Newton and B. Fieselmann , Phosphorous and boron doping of a-Si-Ge:H alloys and its effect on p-i-n solar cells, IEEE ,1988.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明