博碩士論文 965201097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.141.201.95
姓名 謝東廷(Dung-ting Shie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鋯鈦酸鉛壓電式微重量感測器
(Development of PZT Piezoelectric Sensor for Microbalance)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用溶膠凝膠法(sol-gel method)製備鋯鈦酸鉛(PZT)壓電感
測晶片。利用鋯鈦酸鉛薄膜的壓電特性,經由外加電壓使壓電薄膜產生振動,作為微重量感測元件。X-Ray 繞射實驗顯示出壓電薄膜擁有單一鈣鈦礦晶格結構,並藉由直流量測及高頻交流阻抗量測,來分析壓電感測晶片電流密度、極化特性及共振特性。本研究進而藉由微製程技術使晶片微小化,提升晶片感測的靈敏度,並將感測系統加以整合,成為高靈敏度及穩定的微重量感測系統,未來將提供在大腸桿菌之重量感測,加以應用於食品及生物醫學感測領域。
摘要(英) In this research, microbalance devices were developed with
piezoelectric material to measure biomass based on change of resonant frequency. The sensor structure consists of a square piezoelectric PZT thin film. The Pb1.2(Zr0.52Ti0.48)O3 (PZT) thin film was prepared on Pt/Ti/SiO2/Si surface by sol-gel coating method. We designed different sizes of working area (50 × 50 μm2, 100 × 100μm2, 250 × 250μm2, 400 × 400μm2) and verified piezoelectric properties of these PZT devices. The crystallization and microstructure of the PZT thin films were characterized by X-ray diffraction and scanning electron microscopy (SEM). In this result, the PZT thin film annealed at 700℃ for 50 min showed single-phase perovskite peaks. SEM micrograph revealed that the PZT film with thickness of about 600 nm has uniform microstructure without any cracks. In the electrical properties, the leakage current density rose as the piezoelectric working areas increased. The C-V property exhibited complete butterfly patterns, whose symmetry increased with increasing piezoelectric working areas. Besides, the tunability at 250 × 250μm2 working area was maximum, hence it has excellent piezoelectric characteristic. Further, we used potassium hydroxide (KOH) wet etching technique to reduce the backside thickness.This device has great potential for biomolecular detection.
關鍵字(中) ★ 壓電感測器
★ 鋯鈦酸鉛
關鍵字(英) ★ Piezoelectric
★ PZT
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
第一章前言 1
1-1 生物感測器介紹 1
1-2 石英晶體微天平(QCM)介紹 2
1-2-1 壓電特性介紹 2
1-2-2 石英晶體介紹 3
1-2-3石英晶體微天平(QCM)原理 6
1-3 鋯鈦酸鉛PZT鐵電材料 8
1-3-1 鐵電特性介紹 8
1-3-2 鋯鈦酸鉛(PZT)鐵電材料介紹 12
1-3-3 鋯鈦酸鉛(PZT)鐵電材料應用 16
1-4 共振電路介紹 17
1-4-1 並聯諧振電路 17
1-4-2 串聯諧振電路 19
1-4-3 震盪電路 21
1-4-3-1 LC 震盪原理 21
1-4-3-2 CMOS 反相器振盪電路 23
第二章 研究背景 25
2-1 研究動機 25
2-2 研究目標 26
第三章 壓電感測器製作 27
3-1 壓電感測器製作 27
3-1-1感測晶片結構 27
3-1-2 感測晶片光罩設計 28
3-1-2 感測晶片製作 30
3-1-2-1 基板的選取與處理 30
3-1-2-2 下電極製作 31
3-1-2-3 壓電薄膜PZT備製 32
3-1-2-4 上電極製作 34
3-1-2-5 感測晶片製程參數表 37
3-1-3 晶片製作流程圖 40
3-2 矽基板背部蝕刻製作 42
3-2-1 矽基板背部蝕刻光罩設計 43
3-2-2 晶片背部蝕刻製作 44
3-2-2-1 矽基板背部蝕刻製作 44
3-2-2-2 背部蝕刻製程參數表 46
3-2-2-3 背部蝕刻製作流程圖 47
3-3 微流道設計 48
3-4 阻抗量測特性 50
3-5 共振電路介紹 51
3-5-1 甚高頻(VHF)考畢茲型振盪電路 51
第四章 實驗結果與討論 53
4-1 壓電感測晶片之備製 53
4-1-1 壓電薄膜表面形貌分析 56
4-1-1-1 PZT薄膜厚度 57
4-1-2 壓電薄膜晶格結構分析 58
4-1-2-1 熱分解條件對PZT薄膜之影響 62
4-1-2-2 高溫退火對PZT薄膜之影響 65
4-1-2-3 確定PZT薄膜製程條件 72
4-2 未蝕刻壓電感測器電性分析 73
4-2-1 漏電流特性量測分析 73
4-2-2 電容-電壓量測分析 77
4-2-3 阻抗量測分析 85
4-3 壓電感測器背部蝕刻製作與阻抗量測分析 91
4-3-1 壓電感測晶片背部蝕刻製作 91
4-3-1-1 矽基板背部蝕刻製作 91
4-3-1-2 晶片表面二氧化氮去除 95
4-3-2 蝕刻後壓電感測晶片阻抗量測分析 101
4-4 壓電感測系統實現 103
4-4-1 共振電路 103
4-5感測應用結果分析 105
4-5-1壓電感測系統整合 105
第五章 結論 110
參考文獻 112
參考文獻 [1] 饒珮瑩, “利用微機電技術設計及製作壓電式微型加速計”,國立成功大學航太系碩士論文, 民國92年7月。
[2] 林佳珈,“穿膜胜肽與生物細胞膜間的交互作用之探討-膽固醇的
含量對蜂毒胜肽穿膜機制之影響”,國立中央大學化材系碩士論文, 民國93年5月。
[3] D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics”, Rep. Prog. Phys., vol. 61, pp. 1267-1324, 1998.
[4] 張文政, “壓電無閥式微幫浦驅動系統之研製” ,私立逢甲大學機械工程系碩士論文, 民國93年6月。
[5] P. Khaenamkaew, S. Muensit, I. K. Bdikin, A. L. Kholkin, “Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films”, Materials Chemistry and Physics 102(2007) 159-164
[6] J. F. Scott, L. D. Mcmillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices,” Ferroelectrics, vol. 133, pp. 47, 1992.
[7] G. H. Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Technol., vol. A9(3), pp. 414, 1991.
[8] L. M. Sheppard, “Advances in Processing of Ferroelectric Thin Film,” Ceramic Bulletin, vol. 71(1), pp. 85, 1992.
[9] M. Sayer and K. Sreenivas, “Ceramic Thin Film: Fabrication and
Applications,” Science, vol. 247, pp. 1056, 1990.
[10] G. Yi and M. Sayer, “Sol-gel Processing of Complex Oxide Films”, Ceramic Bulletin, vol. 70(7), pp. 1173, 1991.
[11] 林諭男,”強介電陶磁薄膜的應用”,工業材料,107,(1995)49.
[12] 陳連春譯,”振盪電路設計應用鐵則”,建興出版社,1995
[13] Z. Chen, C. Yang, B. Li, M. Sun, B. Yang, “Preferred orientation controlling of PZT(52-48) thin films prepared by sol-gel process”
Journal of Crystal Growth 285(2005) 627-632
[14] 吳朗, “電子陶瓷壓電” 全欣科技圖書,1994
[15] Agilent PN 4294A, “New Technologies for Accurate Impedance Measure”
[16]M. Deshpande, L. Sassere, “PZT thin films for low voltage actuation:
Fabrication and characterization of the transverse piezoelectric
coefficient” , Sensors and Actuators A135 (2007) 690-699
[17]J. S. Hwang, W. S. Kim, H. H. Park, T. S. Kim, “The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films”, Sensors and Actuators A117 (2005) 137-142
[18]H. Zhu, J. Miao, Z. Wang, C. Zhao, W. Zhu, “Fabrication of ultrasonic arrays with 7μm PZT thick films as ultrasonic emitter for object detection in air”, Sensors and Actuators A123-124 (2005) 614-619
[19]J. Lu, Y. Zhang, T. Kobayashi, R. Maeda, T. Mihara, “Preparation and characterization of wafer scale lead zirconate titanate film for MEMS application”, Sensors and Actuators A139 (2007) 152-157
[20]N. Inoue, Y. Maejima, Y. Hayashi, “Crystal-Orientation Controlled PZT FeRAM-Capacitors Using RF Magnetron Sputtering with 12 Single Target”, IEEE 1997 IEDM 97-605
[21] K. R. Udayakumar, P. J. Schuele, J. Chen, S. B. Krupanidhi, and L. E. Cross, “Thickness-dependent electrical characteristics of lead zirconate titanate thin films”, J. Appl. Phys. 77(8), 15 April 1995
[22] J. Cheng ,Z. Meng, “Thickness-dependent microstructures and electrical properties of PZT films derived from sol-gel process”, Thin Solid Films 385 (2001) 5-10
[23]P. Lin, W. Ren, X. Wu, P. Shi, X. Chen, X. Yao, “Thickness effects on structures and electrical properties of lead zirconate titanate thick films”, Ceramics International 34 (2008) 991-995
[24]廖昌昱,“以微製程技術製備鋯鈦酸鉛壓電式微重量感測器”, 國立中央大學電機系碩士論文,民國96年6月。
[25]X. J. Meng, J. G. Cheng, J. L. Sun, J. Tan, H. J. Ye, J. H. Chu , “Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films”, Thin Solid Films 368 (2000) 22-25
[26]S. W. Jiang, Q. Y. Zhang, W. Huang, B. Jiang, “Texture control of Pb(Zr, Ti)O3 thin films with different post-annealing processes”, Applied Surface Science 252(2006) 8756-8759
[27]T. Kobayshi, M. Ichiki, J. Tsaur, R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition”, Thin Solid Films 489 (2005) 74-78
[28] S. Y. Chen,” Texture evolution and electrical properties of oriented PZT thin films”, Materials Chemistry and Physics 45 (1996) 159-162
[29]W. Gong , J. F. Li, X. Chu, L. Li, “Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films”, Journal of the European Ceramic Society 24 (2004) 2977–2982
[30] C.W. Law, K.Y. Tong, J.H. Li, K. Li,“Effect of pyrolysis temperature on the characteristics of PZT films deposited by the sol-gel method”, Thin Solid Films 335 (1998) 220-224
[31] Z. Chen, C. Yang, B. Li, M. Sun, B. Yang, “Preferred orientation controlling of PZT (52-48) thin films prepared by sol–gel process”, Journal of Crystal Growth 285 (2005) 627-632
[32] S. M. Ha, D. H. Kim, H.H. Park, T.S. Kim, “Crystallization and ferroelectric behavior of sputter deposited PZT using a target containing excess Pb and 0 contents” Thin Solid Films 355-356 (1999) 525-530
[33]C. V. R. V. Kumar, R. Pascual, M. Sayer, “Crystallization of sputtered lead zirconate titanate films by rapid thermal processing” J. Appl. Phys. 71 (2),15 January 1992
[34] R. Thomas, S. Mochizuki, T. Mihara, T. Ishida, “Effect of substrate temperature on the crystallization of Pb(Zr,Ti)03 films on Pt/Ti/Si substrates prepared by radio frequency magnetron sputtering with a stoichiometric oxide target”, Materials Science and Engineering B95 (2002) 36-42
[35]X. Zheng, Y. Zhou, Z. Yan, “Dependence of Crystalline, Ferroelectric and Fracture Toughness on Annealing in Pb(Zr0.52,Ti0.48)03Thin Films Deposited by Metal Organic Decomposition”, Materials Research, Vol.6, No.4, 551-556, 2003
[36] P. C. Juan, Y. P. Hu, F. C. Chiu, and J. Y. Lee,” The electrical properties of Metal Ferroelectric(PbZr0.53Ti0.47O3) Insulator
Silicon (MFIS) capacitors with different insulator materials”, Microelectronic Engineering 80 (2005) 309–312
[37] T. Kim, A. I. Kingon, J. P. Maria, R. T. Croswell,” Lead zirconate titanate thin film capacitors on electroless nickel coated copper foils for embedded passive applications”, Thin Solid Films 515 (2007) 7331–7336
[38]江偉岐,“以微製程技術製備鋯鈦酸鉛焦電式微熱量感測器”, 國立中央大學電機系碩士論文,民國96年6月。
[39] H.N. Al-Shareef, D. Dimos, M.V. Raymond, R.W. Schwartz, “Tunability and Calculation of the Dielectric Constant of Capacitor Structures with Interdigital Electrodes”, Journal of Electroceramics , 145-153, 1997
[40]葉俞均, “壓電陶瓷變壓器”, 國立中央大學電機系碩士論文,民國93年6月。
[41] B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, “High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”, Appl. Phys. Lett., Vol. 77, No. 16, 16 October 2000
[42] X.D. Zhang, X.J. Meng, J.L. Sun, T. Lin, J.H. Ma, J.H. Chu, “Low-temperature preparation of sputter-deposited Pb(Zr0.52Ti0.48)O3 thin films through high oxygen-pressure annealing”, Journal of Crystal Growth 310 (2008) 783–787
[43] S.K. Pandey, A.R. James, R. Raman, S.N. Chatterjee, Anshu Goyal, Chandra Prakash, T.C. Goel, “Structural, ferroelectric and optical properties of PZT thin films”, Physica B 369 (2005) 135–142
[44]F. Eichelbaum, R. Borngraber, J. Schroder, R. Lucklum, P. Hauptmann, “Interface circuits for quartz-crystal-microbalance sensors”, American Institute of Physics 1999
[45]M. I. S. Verissimo, P.Q. Mantas, A. M. R. Senos, J. A. B. P. Oliveira, M.T.S.R. Gomes, “Preparation of PZT discs for use in an acoustic wave sensor”, Ceramics International (2008)
[46]H. Choi, A. Dalakoti, S. Bose, A. Bandyopadhyay, “Influence of top electrode design on pMUTs performance”, Sensors and Actuators A 135 (2007) 613-619
[47]林宜良, 林皇堯, 余志成, “化學濕蝕刻高深寬比凸角矽結構光罩補償圖形設計”, 第三屆機密機械製造研討會論文集”, 民國92年11月。
[48]楊啟榮 陳柏穎, “微機電製程之溼式矽微加工技術”
[49]J. Weber, W. M. Albers, J. Tuppurainen, M. Link, R. Gabl, W. Wersing, M. Schreiter, “Shear mode FBARs as highly sensitive liquid biosensors”, Sensors and Actuators A 128 (2006) 84-88
[50]Y. Lee, G. Lim, W. Moon, “A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique”, Sensors and Actuators A 130-131 (2006) 105-110
[51]J. Xie, M. Hu, S. F. Ling, H. Du “Fabrication and characterization of piezoelectric cantilever for micro transducers”, Sensors and Actuators A 126 (2006) 182-186
[52]J. Z. Tsai, C. J. Chen, J. T. Liu, C. Y. Liao, Y. M. Hsin, “A new PZT piezoelectric sensor for gravimetric applications using the resonance-frequency detection”, Sensors and Actuators (2009)
[53]張天益,“利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究” 國立成功大學材料科學及工程學系博士論文, 民國96年6月。
指導教授 蔡章仁(Jang-zern Tsai) 審核日期 2009-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明