參考文獻 |
[1] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Trans. Syst., Man, Cybern. B, vol.SMC-15, no.2 pp.116-132, 1985.
[2] M. Sugeno and G. T. Kang, ‘‘Fuzzy Modeling and Control of Multilayer Incinerator,” Fuzzy Sets and Syst., vol.18, no.3, pp. 329-346, 1986.
[3] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control System,” Fuzzy Sets and Syst., vol.45, no.2, pp.135-156, 1992.
[4] H. O. Wang, K. Tanaka, and M. F. Griffin, ‘‘Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model,’’ Proc. 4th IEEE Int. Fuzzy Syst.,Yokohama, Japan, pp.531-538, 1995.
[5] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design and Analysis:A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
[6] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox, The Math Works Inc., 1995.
[7] K. Tanaka, T. Hori and H.O. Wang, “A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., vol.11, no.4, pp.582-589, 2003.
[8] H.O. Wang, K. Tanaka and M.F. Griffin, “An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. Fuzzy Syst., vol.4, no.1, pp.14-23,1996.
[9] K. Tanaka, T. Hori and H.O. Wang, “A Dual Design Problem via Multiple Lyapunov Functions,” Proc. 10th IEEE Int. Conf. Fuzzy Syst., Melbourne, Australia,pp.388-391, 2001.
[10] K. Tanaka, T. Hori and H.O. Wang, “A Fuzzy Lyapunov Approach to Fuzzy Control System Design,” Proc. American Control Conf., Arlington VA, Washington CD, vol.6, pp.4790-4795, 2001.
[11] K. Tanaka, T. Hori and H.O. Wang, “New parallel Distributed Compensation Using Time-Derivative Membership Functions: A Fuzzy Lyapunov Approach,” Proc. 40th IEEE Conf. Decision and Control, Orlando, FL, pp. 3942-3947, 2001.
[12] M. Johansson, A. Rantzer and K. E. ?rz?n, “Piecewise Quadratic Stability of Fuzzy Systems,” IEEE Trans. Fuzzy Syst., vol.7, no.6, pp.713-722, 1999.
[13] H. Ohtake, K. Tanaka and H.O. Wang, “Switching Fuzzy Controller Design Based on Switching Lyapunov Function for a Class of Nonlinear Systems,” IEEE Trans. Syst.,Man, Cybern. B, vol.36, no.1, pp.13-23, 2006.
[14] J.M. Zhang, R.H. Li and P.A. Zhang, “Stability Analysis and Systematic Design of Fuzzy Control Systems,” Fuzzy Sets and Syst., vol.120, no.1, pp.65-72, 2001.
[15] Z.H. Xiu and G. Ren, “Stability Analysis and Systematic Design of Takagi-Sugeno Fuzzy Control Systems,” Fuzzy Sets and Syst., vol.151, no.1 pp.119-138, 2005.
[16] W.J. Wang, Y.J. Chen and C.H. Sun, “Relaxed Stabilization Criteria for Discrete-Time T-S Fuzzy Control Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov Function,” IEEE Trans. Fuzzy Syst., vol.37, no.3, pp.551-559, 2007.
[17] B.J. Rhee and S. Won, “A New Fuzzy Lyapunov Function Approach for a Takagi-Sugeno Fuzzy Control System Design,” Fuzzy Sets and Syst., vol.157, no.11 pp.1211-1228, 2006.
[18] W.J. Wang, Y.J. Chen and C.H. Sun, “A Relaxed Stability Criterion for T-S Fuzzy Discrete Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.34, no.5, pp.2155-2158, 2004.
[19] W.J. Wang, Y.J. Chen and C.H. Sun, “An Improved Stability Criterion for T-S Fuzzy Discrete Systems via Vertex Expression Discrete Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.36, no.7, pp.672-678, 2006.
[20] J. Li, S. Zhou, and S. Xu, “Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Syst., Man, Cybern. B, vol.38, no.6, pp.1657-1661, 2008.
[21] J.C. Geromel and R.H. Korogui, “Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions,” Automatic Control, IEEE Trans., vol.51, no.12, pp.1984-1989, 2006.
[22] K. Tanaka, H. Ohtake and H.O. Wang, “A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Fuzzy Syst., vol.15, no.3, pp. 333-341, 2007.
[23] M.C. de Oliveira, J. Bernussou and J.C. Geromel, “A new discrete-time robust stability condition,” Syst. & Control Letters, vol.37, pp. 261-256, 1999.
[24] V. N. Phat and P. T. Nam, “Exponential Stability and Stabilization of Uncertain Linear Time-Varying Systems Using Parameter Dependent Lyapunov Function,” Int. Journal of Control, vol.80, no.8, pp. 1333-1341, 2007.
[25] C-W Chen, W-L Chiang, C-H Tsai, C-Y Chen and Morris H. L. Wang, “Fuzzy Lyapunov Method for Stability Conditions of Nonlinear Systems,” Int. Journal on Artificial Intelligence Tools, vol. 15, No. 2, pp163-171, 2006.
[26] I. Abdelmalek, N. Golea and M. L. Hadjili, “A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy Models,” Int. J. Appl. Math. Comput. Sci., vol. 17, no.1, pp39-51, 2007.
[27] K. Tanaka, M. Iwmaki, and H.O. Wang, “Stable Switching Fuzzy Control and Its Application to a Hovercraft Type Vehicle,” Int. fuzzy syst. Conf., pp.804-809, 2000.
[28] J. Dong and G-H Yang, “A New Multiple Lyapunov Function Approach to Synthesis of Fuzzy Control Systems,” Conf. on Ind. Electronics and Applications, pp2284-2289,2007.
[29] K. Tanaka, H. Ohtake and H.O. Wang, “A Descriptor System Approach to Fuzzy Control System Designs using Fuzzy Lyapunov Function,” American Control Conf., pp.4367-4372, 2006.
[30] K. Tanaka, M. Iwmaki, and H.O. Wang, “Stability and Smoothness Conditions for Switching Fuzzy Systems,” American Control Conf., pp.2474-2478, 2000.
[31] M. Feng and C. J. Harris, “Piecewise Lyapunov Stability Conditions of Fuzzy Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.31, no.2, pp.259-262, 2001.
[32] D. J. Choi and P. Park, “State-Feedback Controller Design for Discrete-Time Switching Fuzzy Systems,” Proc. 41th IEEE Conf. on Decision and Control, Las Vegas, Nevada USA, pp.191-196, 2002.
[33] L.K. Wong, F.H.F. Leung and P.K.S. Tam, “Lyapunov Function-Based Design of Fuzzy Logic Controllers and its Application on Combining Controllers,” IEEE Trans.Ind.. Electron., vol. 45, no. 3, pp. 502-509, 1998.
[34] K. Tanaka and M. Sugeno, “Stability Analysis of Fuzzy Systems Using Lyapunov’s Direct Method,” Proc. NAFIPS’90, Toronto, on, Canada, pp. 133-136, 1990.
[35] M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 201-224, 1999.
[36] H. K. Khalil, Nonlinear Systems, third ed., Upper Saddle River, NJ: Prentice-Hall, 2002.
[37] S. Singh, “Stability Analysis of Discrete Fuzzy Fontrol Systems,” Proc.1st IEEE Int. Conf. Fuzzy Syst., San Diego, CA, Mar. pp.527-534, 1992.
[38] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and Design of a Class of Continuous Time Fuzzy Control Systems,” Int. J. Control, vol. 64, pp.1069-1087, 1996.
[39] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust Stabilization of a Class of Uncertain Nonlinear System via Fuzzy Control,” IEEE Trans. Fuzzy Syst., vol.4, pp.1-13, 1996.
[40] C.L. Chen et al., “Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets Syst., vol.57, pp.125-140, 1993.
[41] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, and Cybern., vol. 3, pp.28-44, 1973.
[42] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp.250- 265,1998.
[43] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 324-332, 2001.
[44] E. Kim, and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 523-533, 2000.
|