參考文獻 |
[1] Brookner, E., “Phased-Array and Radar Astounding Breakthroughs An Update,” IEEE Radar Conference, pp. 1-6, May 2008.
[2] K. W. Chang, H. Wang, G. Shreve, J. Harrison, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory Tech., pt.2, vol. 43, pp. 1659-1668, July 1995.
[3] D. A. Williams, “Millimeter wave radars for automotive applications,” 1992 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 1992, pp. 721-724.
[4] E. C. Niehenke, P. Stenger, T. McCormick, and C. Schwerdt, “A planar 94-GHz transceiver with switchable polarization,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 167-170.
[5] R. LaBelle, R. Girard, G., Arbery, “A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar,” IEEE European Microwave Conference, vol.3, pp. 1139-1142 Oct. 2003.
[6] H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowski, “77 GHz fully-MMIC automotive forward-looking radar,” in 1999 GaAs IC symp. Dig., pp. 211-214.”
[7] J. Mondal, K. Wong, D. Richardson, K. Vu, K. Peterson, G. Dietz, R. Haubenstricker, N. Calanca, L. Gluck, and S. Moghe, “77 GHz MMIC T/R module for diplex radar application in collision avoidance radar,” in 1998 GaAs IC Symp. Dig., pp. 181-184.
[8] A. Tessmann, L. Verweyen, M. Neumann, H. Massler, W. H. Haydl, A. Hulsmann, and M. Schechtweg, “A 77 GHz GaAs pHEMT transceiver MMIC for automotive sensor applications,” in 1999 GaAs IC Symp. Dig., pp. 207-210.
[9] K. Kamozaki, N. Kurita, W. Hioe, T. Tanimoto, H. Ohta, T. Nakamura, and H. Kondoh, “A 77 GHz T/R MMIC chip set for automotive radar systems,” in 1997 GaAs IC Symp. Dig., pp. 275-278.
[10] H. J. Siweris, A werthof, H. Tischer, T. Grave, H. Werthmann, R. H. Rasshofer, and W. Kellner, “A mixed Si and GaAs chip set for millimeter-wave automotive radar front-ends,” in 2000 Radio Frequency Integrated Circuits Symp. Dig., pp. 191-194.
[11] H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, and W. Kellner, “Low-cost GaAs pHEMT MMIC’s for millimeter-wave sensor applications,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2560-2567, Dec. 1998.
[12] H. Rohling, M. M. Meinecke, M. Klotz, and E. Mende, “Experience with an experimenatial car controlled by a 77 GHz radar sensor,” 1998 International Radar Symposium, Munich, vol. 1, 1998, pp. 345-354.
[13] Thomas Musch, “A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL,” IEEE Trans. Instrumentation and Measurement, vol. 52, pp. 324-327, Apr. 2003.
[14] M. Klotz, and H. Rohling, “24 GHz radar sensors for automotive applications,” 2000 Microwave Radar and Wireless Communications Conference Dig., vol. 1, May 2000, pp. 359-362.
[15] D. Richardson, “An FMCW radar sensor for collision avoidance,” 1997 Intelligent Transportation System Conference, Nov. 1997, pp. 427-432.
[16] P. Gulden, M. Vossiek, M. Pichler, and A. Stelzer, “Application of state-space frequency estimation to a 24-GHz FMCW tank level gauging system,” 2003 EUMC digest, vol. 3, Oct. 2003, pp. 995-998.
[17] T. H. Ho, S. J. Chung, “A compact 24 GHz radar sensor for vehicle sideway-looking applications,” 2005 EURAD, Oct. 2005, pp. 351-354.
[18] P. Wennekers, A. Ghazionour, and R. Reuter, “An integrated Sige transmitter circuit for 24 GHz radar sensors,” 2002 Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting, Oct. 2002, pp. 212-215.
[19] G. Prescott, S. Gogineni, D. Depardo, H. Chakravarthula, R. Hosseinmostafa, “MMIC-based FM-CW radar for multipolarization backscatter measurements,” IEEE Quantitative Remote Sensing for Science and Applications, vol.3, pp. 2273-2275, July 1995.
[20] J.E. Muller, T. Grave, H.J. Siweris, M. Karner, A. Schafer, H. Tischer, H. Riechert, L. Schleicher, L. Verweyen, A. Bangert, W. Kellner, T. Meier, “GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithography,” IEEE Journal of Solid-State Circuits, vol. 32, issue 9, pp. 1342–1349, Sept. 1997.
[21] H.J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, W. Kellner, “Low-cost GaAs pHEMT MMIC's for millimeter-wave sensor applications,” IEEE Transactions on microwave theory and techniques, vol. 46, issue 12,pp. 2560 - 2567, Dec. 1998.
[22] W. Mayer, M. Meilchen, W. Grabherr, P. Nuchter, R. Guhl, “Eight-channel 77-GHz front-end module with high-performance synthesized signal generator for FM-CW sensor applications,” IEEE Transactions on microwave theory and techniques, vol. 52, issue 3, pp. 993-1000, Mar. 2004.
[23] R. Kozhuharov, A. Jirskog, N. Penndal, H. Zirath, ” Single-Chip 24-GHz Synthesizer for a Radar Application,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 205-208, Nov. 2006.
[24] Jeong-Geun Kim; Sang-Hoon Sim; Sanghoon Cheon; Songcheol Hong, “24 GHz circularly polarized Doppler radar with a single antenna,” IEEE European Microwave Conference, vol.2, pp. 4-6 Oct. 2005.
[25] Kai Chang, RF and Mircowave Wireless Systems, John Wiley & Sons, Inc. 2000
[26] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. 2001
[27] G. Gonzalez, “ Microwave Transistor Amplifier-Analysis and Design,” 2nd Ed., Prentice Hall, Inc., 1984.
[28] 高曜煌, “射頻鎖相回路IC設計,” 滄海, 2005.
[29] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[30] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[31] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[32] R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications, Prentice-Hall, 2000.
[33] R. Aparicio and A. Hajimiri, “A noise-shifting Differential Colpitts VCO,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1728-1736, Dec. 2002.
[34] H. Diahanshahi, N. Saniei, S. P. Voinigescu, M. C. Maliepaard, and C. A. T. Salama, "A 20-GHz InP-HBT voltage-controlled oscillator with wide frequency tuning range," IEEE Trans. on Microwave Theory and Techniques, vol. 49, no.9, Sept. 2001.
[35] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, Al Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO's in CPW structure,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 11, pp. 379-381, Nov. 1995.
[36] L. Zhang, R. Pullela, C. Winczewski, J. Chow, D. Mensa, S. Jaganathan, and R. Yu, “A 37 ~ 50 GHz InP HBT VCO IC for OC-768 fiber optic communication applications,” 2002 IEEE Radio Frequency Integrated Circuit Symposium Digest, June, 2002, pp. 85-88.
[37] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. Gutierrez-Aitken, F. Yamada, T. R. Block, and D. C. Streit, “A 108-GHz InP-HBT monolithic push-push VCO with low phase noise and wide tuning bandwidth,” IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1225-1232, Sept. 1999.
[38] D. Baek, S. Ko, J. G. Kim, D. W. Kim, and S. Hong, “Ku-band InGaP-GaAs HBT MMIC VCOs with balanced and differential Topologies,” IEEE Transactions on microwave theory and techniques, vol. 52, no. 4,pp. 1353-1359, April 2004.
[39] H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 184-191, Feb. 2003.
[40] Koji Tsutsumi, Miki Kagano, Noriharu Suematsu, “A Double Tuned Ku-Band SiGe-MMIC VCO with Variable Feed-Back Capacitor,” Proceedings of Asia-Pacific Microwave Conference, Dec. 2006, pp. 1118-1127.
[41] B. Jung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2359–2370, Dec. 2004.
[42] A. Scuderi, and G. Palmisano, “A low-phase-noise voltage-controlled oscillator for 17-GHz applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, Apr. 2006.
[43] C.-C. Li, C.-C. Chen, B.-J. Huang, P.-C. Huang, K.-Y. Lin, H. Wang, “A novel ring-based triple-push 0.2-to-34 GHz VCO in 0.13-μm CMOS technology,” 2008 IEEE International Microwave Symposium Digest, June, 2008, pp. 347-350.
[44] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device. Lett. vol. 26, no. 2, pp. 53-55, Feb. 2005.
[45] WIN Semiconductors, “0.5μm InGaAs pHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.0.1, May, 2006.
[46] Sonnet User’s Manual, Release 11, Sonnet Software Inc., North Syracuse, NY, Nov. 2005.
[47] J. Kim J.-O. Plouchart, N. Zamdmer, M. Sherony, Y. T. Meeyoung, Y. R. Trzcinski, M. Talbi, J. Sarfran, A. Ray, L. Wagner, “A power-optimized widely-tunable 5-GHz monolithic VCO in a digital SOI CMOS technology on high resistivity substrate,” 2003 International Symposium on Low Power Electronics and Design Proceeding, Aug, 2003, pp. 434-439.
[48] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transaction on Microwave Theory and Techniques, vol. 36, no. 7, pp. 1151-1159, Jan. 1988.
[49] L. Yang and S. I. Long, “New Method to Measure the Source and Drain Resistance of the GaAs MESFET,” IEEE Electron Device Letters, vol. 7, pp. 75-77, Feb. 1986.
[50] Steve C. Cripps, RF Power Amplifiers for Wireless Communications, Second Edition, Artech House, 2006.
[51] Steve Marsh, Practical MMIC Design, Artech House, 2006.
[52] George D. Vendelin, Microwave Circuit Using Linear and Nonlinear Techniques, Second Edition, John Wiley, New Jersey, 2005.
[53] Arshad Hussain, Advance RF Engineering for Wireless System and Networks, John Wiley, New Jersey, 2005.
[54] A. Ghazinour, P. Wennekers, J. Schmidt, Y. Yin, R. Reuter, and J. Teplik, “A fully-monolithic SiGe-BiCMOS transceiver chip for 24 GHz applications,” in BTCM Proceedings. IEEE, pp. 181–184, Sep. 2003.
[55] A. Natarajan, A. Komijani, A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” IEEE JOURNAL OF SOLID STATE CIRCUITS, vol. 40, no. 12, Dec. 2005
[56] C. Cao, Y. Ding, X. Yang, J.-J. Lin, A.K. Verma, J. Lin, F. Martin, and K.K. O, “A 24-GHz Transmitter with an On-Chip Antenna in 130-nm CMOS,” in VLSI Circuits Symp. Dig. IEEE, pp. 148–149, June 2006.
[57] P. Zhao, H. Veenstra, J.R. Long, “ A 24GHz Pulse-Mode Transmitter for Short-Range Car Radar ,” in RFIC Proceedings. IEEE, pp. 379 – 382, June 2007.
[58] R. Kozhuharov, A. Jirskog, N. Penndal, and H. Zirath, “Single-Chip 24- GHz Synthesizer for a Radar Application,” in CSIC Symp. Dig. IEEE, Nov. 2006, pp. 205–208.
[59] Y. Cao, M. Tiebout, V. Issakov, “A 24GHz FMCW radar transmitter in 0.13 μm CMOS,” IEEE European Solid-State Circuits Conference, vol.15-19, pp. 498 – 501, Sept. 2008.
[60] Hong-Yeh Chang, Yi-Shuo Wu, and Yu-Chi Wang, “A 38% Tuning Bandwidth Low Phase Noise Differential Voltage Controlled Oscillator Using a 0.5 μm E/D-PHEMT Process,” IEEE Microwave and Wireless Comp. Lett. vol. 19, no. 07, pp. 467-496, July. 2009.
[61] 詹清硯, “微波及毫米波行進波切換器之研製 Design of Microwave and Millimeter-Wave Traveling Wave Switch,” 國立中央大學電機工程研究所碩士論文, 民國98年6月.
[62] 陳喬民, “應用於DCS-1800之分數型頻率合成器設計 Design of Fractional-N Frequency Synthesizer for DCS-1800,” 國立交通大學電信工程研究所碩士論文, 民國91年6月.
[63] Steghen A. Mass, “ Microwave Mixers,” 2nd Ed., Artech House, Inc., 1993.
[64] S.C. Cripps, "Advanced Techniques in RF Power Amplifier Design," Norwood, MA: Artech House Incorporated, 2002.
|