博碩士論文 965201119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.138.105.4
姓名 徐天慶(Tien-Ching Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 單晶積體化之高速、低耗能850nm波段面射型雷射和光檢測器的應用
(High-Speed, Low-Power-Consumption, 850nm VCSEL and Monolithic Integrated PD Module for The Application of Optical Interconnect)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們證明了在砷化鎵/砷化鋁鎵(GaAs/AlGaAs)的基板上,完成了高速單戴子傳輸光檢測器和使用鋅擴散的面射型雷射的積體化整合,面射型雷射有很高的資料傳輸與功率消耗的比值(2.4Gbps/mW),而單載子傳輸光檢測器可在無外加偏壓下操作,如此一來可應用在雙向傳輸的光連結技術上。積體化的單戴子傳輸光檢測器量子效率可以達到46.7%,也有很高的3dB 頻寬(13Gbit/s),且從低到高的光電流(0.1 to 0.4mA),都可以打開10Gbit/s的眼圖,不需要額外的驅動電路。而積體化的面射型雷射也可以通過10Gbit/s的眼圖,在很低的操作電流下(3mA),而且只需要很低的交流調變的高頻訊號(0.25Vp-p驅動)就可以打開眼圖。
摘要(英) We demonstrate the monolithic integration of high-speed GaAs/AlGaAs based uni-traveling carrier photodiode (UTC-PDs) with Zn-diffusion vertical-cavity surface-emitting lasers (VCSELs) both with very-high data-rate/power-consumption ratio for the application to bi-directional optical interconnect Under zero-bias operation, the integrated UTC-PD exhibits reasonable external efficiency (46.7%), wide 3-dB bandwidth (13GHz) and 10Gbit/sec eye-opening from low to high output photocurrents (0.1 to 0.4mA) without integrating with any active integrated circuits (ICs). Regarding with the integrated Zn-diffusion VCSEL, it can achieve 10Gbit/sec eye-opening under a pre-bias current as small as 3mA and a very-small radio-frequency (RF) driving voltage (0.25Vp-p driving-voltage). The data-rate/power-consumption ratio of the VCSEL is extremely-high, as much as 2.4Gbps/mW.
關鍵字(中) ★ 光檢測器
★ 面射型雷射
關鍵字(英) ★ PD
★ 850nm VCSEL
論文目次 目錄
摘要 I
Abstract II
致 謝 III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 序 論 1
1-1 多媒體時代 1
1-2 光連結應用 1
1-3 面射型雷射簡介 5
1-4 光檢測器簡介 7
1-5 單晶積體化VCSEL和單載子傳輸光偵測器 7
第二章 理 論 8
2-1 VCSEL製程基本理論 8
2-1-1. 鋅擴散於DBR 8
2-1-2. VCSEL的選擇性水氧化理論 11
2-1-3. 發散角 14
2-2 無外加偏壓的UTC光二極體之原理介紹 16
2-2-1 傳統的PIN光二極體之缺點 16
2-2-2單載子傳輸光二極體簡介 18
2-2-3無外加偏壓之單載子傳輸光二極體簡介 18
第三章 實 驗 21
3-1 磊晶結構 21
3-2 VCSEL和UTC-PD 24
3-3 鋅擴散製程 25
3-4 水氣氧化 28
3-5 製作電極以及金屬回火(Annealing) 30
3-6 平坦化及製作金屬接線 35
第四章 量測結果與討論 39
4-1 VCSEL量測系統 39
4-1-1 電流對電壓(I-V)的量測 39
4-1-2 光功率對電流(L-I)之量 39
4-1-3 頻譜(Spectrum) 之量測系統 40
4-1-4 頻寬(Bandwidth)之量測系統 40
4-1-5 眼圖(Eye pattern)之量測系統 41
4-2 VCSEL量測結果 41
4-2-1 電流對電壓(I-V)曲線 41
4-2-2 輸出光功率對電流(L-I)曲線 42
4-2-3 光頻譜(Optical spectra)圖 44
4-2-4 頻寬(Bandwidth) 和D係數(D-factor) 44
4-2-5 S11、S21參數模擬 47
4-2-6 K參數(K parameter) 50
4-2-7 眼圖(eye pattern)量測 52
4-3 UTC-PD量測系統 53
4-3-1 電流對電壓(I-V)的量測 53
4-3-2 頻寬(Bandwidth)之量測系統 54
4-3-3 眼圖(Eye pattern)之量測系統 55
4-4 UTC-PD量測結果 56
4-4-1 電流對電壓(I-V)曲線 56
4-4-2 頻寬(Bandwidth) 之量測結果 57
4-4-3 S11、S21參數模擬 58
4-4-4 眼圖(Eye pattern)之量測結果 62
第五章 結論與未來研究 63
參考文獻 64
參考文獻 參考文獻
[1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren, Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength”IEEE Journal of Quantumelectronics, VOL. 45, NO. 7, JULY 2009
[5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[6] R. Michalzik, M. Stach, F. Rinaldi, and S. Lorch, Ulm University, Inst. Of Optoelectronics, Albert-Einstein-Allee 45, 89081 Ulm, Germany “Monolithic Integration of VCESLs and MSM Photodiodes for bidirectional multimode fiber communications”, Proc. of SPIE, Vol.6484 648409-1
[7] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart, “Self-interstitial mechanism for Zn diffusion-induceddisordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl.Phys., vol. 73, pp. 3769-3781, 1993.
[8] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion,” J. Appl.Phys., vol. 55, pp. 7082-7084, 1982.
[9] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,“ Appl. Phys. Lett., vol. 38, pp.776-778, 1981.
[10] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induceddisorder in AlAs/GaAs superlattice,” Semicond. Sci. Technol., 4, pp. 841-846, 1989.
[11] 楊立群”高速高功率單模態850nm 波段面射型雷射”國立中央大學電機工程學系碩士論文(民國96年)
[12] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90 年).
[13] R. G. Hunsperger, “Integrated Optics:Theory and Technology,” Hong Kong,Springer-Verlag, 77, 1992.
[14] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett., vol. 47, pp.1193, 1985.
[15] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison,“Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218-220, 1990.
[16] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, pp. 3770, 1965.
[17] M. Ochiai, Appl. Phys. Lett., vol. 68, pp. 1898, 1996 and J. H. Kim , Appl. Phys. Lett., vol. 69, pp. 3357, 1996.
[18] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, June 1997.
[19] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers, ”IEEE Photon. Technol. Lett., 7, 1237, 1995.
[20] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent no.5, 262, 360, 1993.
[21] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., 69, pp. 1935-1837, 1996.
[22] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
[23] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low thresholdmicrocavity lasers using half-wave spacer layers and lateral index confinement,” Appl.Phys. Lett., vol. 66, pp. 1723-1725, 1995.
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
[25] Hermann A. Haus, ”Waves and Fields in Optoelectronics,” 1984.
[26] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995.
[27] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron, vol. 10, pp. 709–727, July/August 2004
[28] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996), pp. 2.-30
[29] X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams, “A comparison of front and backside-illuminated highsaturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec., vol. 40, no. 9, pp. 1321–1325, 2004
[30] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang, “90% coupling of topsurface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silicafiber,” Electron. Lett., vol. 26, no. 19, pp.347-350 1990.
[31] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser,” Soc. Photo-opt Instrun. Eng., vol. 1418, pp. 414-421, 1991.
[32] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, ”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, 1991.
[33] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photon. Technol. Lett., 13, pp. 266-269, 2001.
[34] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[35] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 33, 1810-1824, 1997.
[36] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[37] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[38] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007
[39] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley, Oct. 1995.
[40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[41] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[42] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, no. 5, Sep. / Oct. 2007.
[43] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
[44] Ralph H. Johnson , Daniel M. Kuchta “30 Gb/s Directly Modulated 850 nm Datacom VCSELs” in Proc. Conf. Lasers Electro-Opt. (CLEO 2008), Paper CPDB2.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明