參考文獻 |
參考文獻
[1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren, Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength”IEEE Journal of Quantumelectronics, VOL. 45, NO. 7, JULY 2009
[5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[6] R. Michalzik, M. Stach, F. Rinaldi, and S. Lorch, Ulm University, Inst. Of Optoelectronics, Albert-Einstein-Allee 45, 89081 Ulm, Germany “Monolithic Integration of VCESLs and MSM Photodiodes for bidirectional multimode fiber communications”, Proc. of SPIE, Vol.6484 648409-1
[7] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart, “Self-interstitial mechanism for Zn diffusion-induceddisordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl.Phys., vol. 73, pp. 3769-3781, 1993.
[8] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion,” J. Appl.Phys., vol. 55, pp. 7082-7084, 1982.
[9] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,“ Appl. Phys. Lett., vol. 38, pp.776-778, 1981.
[10] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induceddisorder in AlAs/GaAs superlattice,” Semicond. Sci. Technol., 4, pp. 841-846, 1989.
[11] 楊立群”高速高功率單模態850nm 波段面射型雷射”國立中央大學電機工程學系碩士論文(民國96年)
[12] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90 年).
[13] R. G. Hunsperger, “Integrated Optics:Theory and Technology,” Hong Kong,Springer-Verlag, 77, 1992.
[14] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett., vol. 47, pp.1193, 1985.
[15] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison,“Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218-220, 1990.
[16] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, pp. 3770, 1965.
[17] M. Ochiai, Appl. Phys. Lett., vol. 68, pp. 1898, 1996 and J. H. Kim , Appl. Phys. Lett., vol. 69, pp. 3357, 1996.
[18] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, June 1997.
[19] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers, ”IEEE Photon. Technol. Lett., 7, 1237, 1995.
[20] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent no.5, 262, 360, 1993.
[21] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., 69, pp. 1935-1837, 1996.
[22] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
[23] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low thresholdmicrocavity lasers using half-wave spacer layers and lateral index confinement,” Appl.Phys. Lett., vol. 66, pp. 1723-1725, 1995.
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
[25] Hermann A. Haus, ”Waves and Fields in Optoelectronics,” 1984.
[26] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995.
[27] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron, vol. 10, pp. 709–727, July/August 2004
[28] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996), pp. 2.-30
[29] X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams, “A comparison of front and backside-illuminated highsaturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec., vol. 40, no. 9, pp. 1321–1325, 2004
[30] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang, “90% coupling of topsurface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silicafiber,” Electron. Lett., vol. 26, no. 19, pp.347-350 1990.
[31] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser,” Soc. Photo-opt Instrun. Eng., vol. 1418, pp. 414-421, 1991.
[32] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, ”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, 1991.
[33] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photon. Technol. Lett., 13, pp. 266-269, 2001.
[34] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[35] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 33, 1810-1824, 1997.
[36] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[37] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[38] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007
[39] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley, Oct. 1995.
[40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[41] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[42] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, no. 5, Sep. / Oct. 2007.
[43] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
[44] Ralph H. Johnson , Daniel M. Kuchta “30 Gb/s Directly Modulated 850 nm Datacom VCSELs” in Proc. Conf. Lasers Electro-Opt. (CLEO 2008), Paper CPDB2.
|