參考文獻 |
[1] C. Berrou, A. Glavieux, P. Thitimajshima, ” Near Shannon limit error- correcting coding
and decoding: Turbo codes,” IEEE Proc. ICC’93, pp. 1064-1070, May 1993.
[2] R. G. Gallager, “ Low density parity check codes,” IEEE Trans. Information Theory, vol. 8, pp. 21–28, Jan. 1962.
[3] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” Proceedings of the 5th IMA Conference on Cryptography and Coding, pp. 100–111
[4] Se-Hyeon Kang, In-Cheol Park, ‘‘ Loosely coupled memory-based ecoding architecture
for low density parity check codes,” pp. 1045 – 1056, May 2006
[5] M.Fossorier,et al. “ Reduced complexity iterative decoding of low-densityparity-check
codes based on belief propagation,” IEEE Trans. Comm., pp. 673-680, May 1999.
[6] G. D. Forney, “ Codes on graphs: Normal realizations,” IEEE Trans.onInformation
Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001
[7] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “ Factor graphs and the sum- product algorithm,” IEEE Trans. on Information Theory, vol. 47, no.2, pp. 498- 519, Feb.2001.
[8] Vukobratovic, D. , Senk, V. , “ On the Optimized Patent-Free LDPC Code Design for Content Distribution Systems,” Digital Object Identifier 10.1109/ISWCS.2007, pp. 365 - 369, Oct. 2007
[9] Saeedi, H.; Banihashemi, A. , ” Design of Irregular LDPC Codes for BIAWGN Channels with SNR Mismatch,“ Transactions on Communications, Vol. 57, pp.6-11, Jan. 2009
[10] Li, Z.; Chen, L.; Zeng, L.; Lin, S.; Fong, W. , ” Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes,” Transactions on Communications, Vol. 53, pp.1973 – 1973, Nov. 2005
[11] J. Rosenthal and P.O. Vontobel. ,” Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis,” Allerton Conference on Communication, Control and Computing, pp. 248-257, Oct.2000.
[12] Mansour, M.M. Shanbhag, N.R., “ Low-power VLSI decoder architectures for LDPC codes,” International symposium on Low power electronics and design, pp.84 – 289, 2002
[13] M. Karkooti and J. R. Cavallaro, ” Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding,” Proceedings of the International Conference on Information Technology: Coding and Computing, Vo. 1, pp.579 – 585, 2004
[14] J. Heo. , “ Analysis of Scaling Soft Information on Low Density Parity Check Codes,” Electronics Letters, Vol. 39, pp. 219-221, Jan 2003
[15] Spagnol, C., Marnane, W., Popovici, E.,“ Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference,” Volume: 1, pp. 289-292, vol. 1, Aug 2005
[16] T. Ishikawa, K. Shimizu, T. Ikenaga and S. Goto, ” High-Throughput LDPC Decoder
for Long Code-Length,” International Symposium on VLSI Design, Automation and Test, pp.1-4, Apr. 2006.
[17] Zhongfeng Wang Zhiqiang Cui,“ A Memory Efficient Partially Parallel Decoder Architecture for QC-LDPC Codes,” Very Large Scale Integration (VLSI) Systems, pp.729-733, Nov 2005
[18] Chin-Long Wey, Ming-Der Shieh, Shin-Yo Lin, “ Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” IEEE Transactions On Circuits And Systems, Vol. 55, pp. 3430 – 3437, Dec. 2008
[19] C.-K. Liau and C.L. Wey, “ A Partially Parallel Low-Density Parity Check Code Decoder with Reduced Memory for Long Code-Length,” VLSI Design/CAD Symposium, Aug. 2007
[20] A. Blanksby and C. J. Howland, “A 220mW 1-Gbit/s 1024-Bit Rate-1/2 Low Density Parity Check Code Decoder,” in Proc. IEEE CICC, LasVegas, NV, USA, pp. 293-6, May 2001.
[21] A. Blanksby and C. J. Howland, “A 690mW 1-Gbit/s 1024-b Rate-1/2 Low -Density Parity-Check Code Decoder,” IEEE Journal of Solid-State Circuits, vol.37, no. 3, pp. 404-412,March 2002.
[22] Y. Kou, S. Lin and M. P. C. Fossorier, “Low-Density Parity-Check Code Based on
Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inform. Theory, vol. 47, pp2711-2736,Nov. 2001
[23] J. Zhang and M. P. C. Fossorier, “A Modified Weighted Bit-Flipping Decoding of Low-Density Parity-Check Codes,” IEEE Comm. Lett., vol. 8, pp. 165-167, Mar. 2004.
[24] M. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 1594-1606, Apr. 2005.
[25] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-Based decoding algorithms of LDPC codes,” IEEE Comm. Lett., vol. 6, pp. 208-210, Mar. 2002.
[26] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Comm. Lett., vol. 50, pp. 406-414, March 2002.
[27] G.. Caire, G. Tarico and E. Biglieri, “Bit-Interleaved coded modulation,” IEEE Trans. Inform. Theory., Vol. 44, pp. 927-946, 1998.
[28] R.M.Tanner,“A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.
|