參考文獻 |
1. 王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
2. 王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
3. 內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北(2001)。
4. 李建中,「試樁加載過程及結果詮釋法之探討」,地工技術雜誌,第五期,第91~97頁(1984)。
5. 范光照、張郭益,精密量測,高立圖書有限公司,台北 (2002)。
6. 洪正杰,「沈泥質砂土中拉力樁與壓力樁荷重行為之比較」,碩士論文,朝陽科技大學營建工程系,台中(2001)。
7. 施國欽,大地工程學(二)基礎工程篇,文笙書局,台北(2001)。
8. 陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
9. 張博瑋,「基樁承壓與抗拉行為之研究」,碩士論文,國立台灣大學土木工程研究所,台北(2001)。
10. 梁能,「基樁軸向承壓之依時行為」,博士論文,國立中央大學土木工程學系,中壢(2002)。
11. 黃俊鴻、楊志文,「基樁載重試驗承載力判釋方法之探討與建議」,地工技術雜誌,第八十期,第5~16頁(2000)。
12. 游俊達,「場鑄樁載重試驗結果詮釋與極限承載力之研究」,碩士論文,國立台北科技大學土木與防災研究所,台北(2000)。
13. 廖文彬,「由模型樁試驗探討砂土層中軸向基樁摩擦行為」,碩士論文,國立台灣科技大學營建工程系,台北(1999)。
14. 廖慶隆,「電子量測系統之基本特性及在土木工程上之應用」,中國土木水利工程學刊,第十二卷,第三期,第85~100頁(1985)。
15. 廖新興,「黏性土壤中鑽掘樁之摩擦特性」,博士論文,國立中央大學土木工程學系,中壢(1995)。
16. 盧玉璜,「黏性土層中基樁之摩擦行為」,碩士論文,國立中央大學土木工程學系,中壢(1993)。
17. 藍士堯,「垂直承載樁試驗之資料分析」,碩士論文,國立台灣大學土木工程研究所,台北(2004)。
18. 茶古文雄,「建築設計杭引拔抵抗力機構考方」,基礎工,Vol. 22, No.7, pp.26-32 (1994)。
19. 伊藤圭典、前原雅幸,「場所打杭引拔抵抗???考察」,土木??論文集,第376?, pp.59-74 (1986)。
20. Alawneh, A. S., “Modelling Load-Displacement Response of Driven Pile in Cohesionless Soils under Tensile Loading.” Computers and Geotechnics, Vol. 32, No.8, pp. 578-586 (2005).
21. Altaee, A., Fellenius, B. H., and Evgin, E., “Load Transfer for Piles in Sand and the Critical Depth.” Canadian Geotechnical Journal, Vol. 30, No. 3, pp. 455-463 (1993).
22. Amira, M., Yokoyama, Y., and Imaizumi, S., “Friction Capacity of Axially Loaded Model Pile in Sand.” Soils and Foundations, Vol. 35, No. 1, pp. 75-82 (1995).
23. American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load.” Annual Book of Standard, ASTM D1143-81, pp. 195-205 (1994).
24. American Society for Testing Materials, “Standard Test Method for Testing Individual Piles Under Static Axial Tensile Load.” Annual Book of Standard, ASTM D3689-90, pp. 530-540 (1994).
25. American Society for Testing Materials, “Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus.” Annual Book of Standard, ASTM E111-82 pp. 274-279 (1994).
26. Chattopadhyay, B. C., and Pise, P. J., “Uplift Capacity of Piles in Sand.” Journal of Geotechnical Engineering, Vol. 112, No. 9, pp. 888-904 (1986).
27. Fellenius, B. H., “Analysis of Rresults From Routine Pile Load Tests.” Ground Engineering, Vol. 13, No. 6, pp. 19-24 (1980).
28. Fellenius, B. H., Harris, D. E., and Anderson, D. G., “Static Loading Test on a 45 m Long Pipe Pile in Sandpoint, Idaho.” Canadian Geotechnical Journal, Vol. 41, No. 4, pp. 613-628 (2004).
29. Fretti, C., Lo Presti D.C.F, and Pedroni, S., “A Pluvial Deposition Method to Reconstitute Well-Graded Sand Specimens.” Geotechnical Testing Journal, ASTM, Vol. 18, No. 2, pp. 292-298 (1995).
30. Hsu, S. T., and Liao, H J., “Uplift Behavior of Cylindrical Anchors in Sand.” Canadian Geotechnical Journal, Vol. 35, No. 1, pp. 70-80 (1998).
31. Iskander, M., El-Gharbawy, S., and Olson, R., “Performance of Suction Caissons in Sand and Clay.” Canadian Geotechnical Journal, Vol. 39, No. 3, pp. 576-584 (2002).
32. Ismael, N. F., Member, “Analysis of Load Tests on Piles Driven Through Calcareous Desert Sands.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 12, pp. 905-908 (1999).
33. Ismael, N. F., Klym, T. W., “Uplift and Bearing Capacity of Short Piers in Sand.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. 5, pp. 579-594 (1979).
34. Jardine, R. J., Standing, J. R., and Chow, F. C., “Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand.” Geotechnique, Vol. 56, No. 4, pp. 227-244 (2006).
35. Kishida, H., and Uesugi, M., “Tests of the Interface between Sand and Steel in the Simple Shear Apparatus.” Geotechnique, Vol. 37, No. 1, pp. 45-52 (1987).
36. Kezdi, A., “Pile Foundations.” Foundation Engineering Handbook, H. F. Winterkorn and H. Y. Fang, eds., Van Nostrand Reinhold, co., New York., pp. 556-600 (1975).
37. Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O’Rourke, T. D., Mcguire, W., Wood, W. A., and Capano, “Transmission Line Structure Foundation for Uplift-Compression Loading.” Report, No. EL-2789, Electric Power Research Institute, Palo Alto, California (1983).
38. Kulhawy, F. H., “Drained Uplift Capacity of Drilled Shaft.” Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, No. 2, pp. 167-172 (1985).
39. Mansure, C. I., and Hunter, A. H. “Pile Test-Arkansas River project.” Proceedings, ASCE, Vol. 96, No.SM5, pp. 1545-1582 (1970).
40. Meyerhof, G. G., and Adams, J. I., “The Ultimate Uplift Capacity of Foundation.” Canadian Geotechnical Journal, Vol. 5, No. 4, pp.225-244 (1968).
41. Nicola, A. D., and Randolph, M. F., "Tensile and Compressive Shaft Capacity of Piles in Sand.” Journal of Geotechnical Engineering, Vol. 119, No. 12, pp. 1952-1973 (1993).
42. Nemoto, H., Yaegashi, K., Takeuchi, Y., Nishimura, N., Matsumoto, T., and Kitiyodom, P., “Vertical Load Tests of Model Piled Rafts with Different Pile Head Connection Conditions.” Physical Modelling in Geotechnics-6th ICPMG ’06-Ng, Zhang and Wang (eds), Vol. 2, pp.853-859 (2006).
43. O’Neill, M. W., Hawkins, R. A., and Mahar, L. J., Associate Members, “Load Transfer Mechanisms in Piles and Pile Groups.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT12, pp. 1605-1623 (1982).
44. Parry, R. H., and Swin, C. W., “Effective Stress Methods of Calculating Skin Friction on Driven Piles in Soft Clay.” Ground Engineering, Vol. 10, No. 3, pp. 24-26 (1977).
45. Potyondy, J. G., “Skin Friction between Various Soils and Construction Materials.” Geotechnique, Vol. 11, No. 4, pp. 339-353 (1961).
46. Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design. Wiley, New York (1980).
47. Randolph, M. F., Dolwin, J., and Beck, R. D., “design of driven piles in sand.” Geotechnique, London, England (1993).
48. Rojas, E., Valle, C., and Romo, M. P., “Soil-Pile Interface Model for Axially loaded Single Piles.” Soils and Foundations, Vol. 39, no.4, Aug., pp. 35-45 (1999).
49. Salgado, R., Mitchell, J. K., and Jamiolkowski, M., “Calibration Chamber Size Effects on Penetration Resistance in Sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp. 878-888 (1998).
50. Sonia, A., and Desai, C. S., “Load-Deformation Response of Axially Loaded Piles.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 12, pp. 1483-1500 (1987).
51. Tomlinson, M. J., Pile Design and Construction Practice. (1977).
52. Uesugi, M., Kishida, H., and Tsubakihara, Y., “Behavior of Sand Particles in Sand-Steel Friction.” Soils and Foundations, Vol. 28, No. 1, pp. 107-118 (1988).
53. Vesic, A. S., “Bearing Capacity of Deep Foundations in Sand.” Highway Research Board Record, No. 39, pp. 112-153 (1963).
54. Yoshimi, Y., and Kishida, T., “Friction between Sand and Metal Surface.” Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, pp. 831-834 (1981). |