博碩士論文 93322030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.149.24.145
姓名 邵國瑋(Kuo-Wei Shao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 卜作嵐材料抑制鹼-骨材反應之成效評估
(The Effect Evaluation of Pozzolan Materials Mitigates Alkali-Aggregate Reaction.)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對高耐熱玻璃、海岸山脈安山岩與和平溪砂石,以爐灰、120級與100級水淬爐石取代水泥重量0%~55%,進行加速水泥砂漿棒試驗(ASTM C1567)、水泥砂漿棒試驗(ASTM C227)與混凝土角柱試驗試驗(ASTM C1293),評估卜作嵐材料抑制鹼-骨材反應之成效。
以爐灰和爐石抑制鹼-骨材反應,可以得到明顯的效果,取代水泥比例愈高,抑制效果愈佳,而抑制效果會因卜作嵐材料置換水泥的比例、卜作嵐材料種類、反應性骨材的種類及試體中的鹼含量不同而異。由ASTM C1293試驗結果顯示,鹼含量Na2Oeq.=2.0%時,海岸山脈安山岩的試體需要卜作嵐材料取代水泥30%,和平溪骨材需要卜作嵐材料取代水泥45%,可以將膨脹量抑制到危害門檻值以下。
由ASTM C1567和ASTM C1293試驗結果的比較,討論以加速水泥砂漿棒試驗結果得到能有效抑制鹼-骨材反應的卜作嵐材料用量,運用在實際混凝土構物是否也能有效抑制鹼-骨材反應。比較結果為:ASTM C1567試驗結果偏保守,所需卜作嵐材料比例偏高。當混凝土角柱試驗的鹼含量提高,則兩試驗相關性提高;當ASTM C1567判斷危害性的門檻值提高,則兩試驗的一致性提高;若ASTM C1567判斷危害性的齡期延長(齡期16天延長至28天或56天),則以第28天判斷齡期與ASTM C1293的試驗結果較為一致。
摘要(英) The study is mainly concerning with pyrex glass﹑coastal range andesites and Heping river aggregate, taking fly-ash slag powder﹑120 grade and 100grade ground granulated blast furnace slag to replace 0%~55% weight of cement, use of the acceleration mortar test(ASTM C1567)﹑mortar bar test(ASTM C227) and concrete prism test(ASTM C1293) to evaluate the effect of pozzolan materials mitigates the alkali-aggregate reaction.
According to fly-ash slag powder and slag mitigate the alkali-aggregate reaction, we can see the obvious effects that when we use the higher proportion of cement replacement, the better mitigate effect, and the mitigate result would be different because of pozzolan materials change the proportion of the cement、types of pozzolan materials、types of reactive aggregate and alkali content of specimen. According to the testing result of ASTM C1293, when the alkali content Na2Oeq.=2.0%, the specimen of coastal range andesites needs the pozzolan materials to replace 30% of cement and Heping river aggregate needs the pozzolan materials to replace 45% of cement. It can make mitigate dilatability under the endanger threshold value.
According to the comparison result of ASTM C1293 and ASTM C1567, we can know that the method of the acceleration mortar test can get pozzolan materials consumption to mitigate effectively alkali-aggregate reaction. If we use actual concrete structure, whether it mitigate usefully the alkali-aggregate reaction. The comparative result is: the testing result of ASTM C1567 is more conservative and the proportion of pozzolan materials is higher. When alkali content of concrete concrete prism test is increasing, the relative of this two tests is increasing. When endanger threshold value of ASTM C1567 is increasing, the consistency of this two tests is increasing. If the extension of the determine harmfulness of ASTM C1567 (age extend from 16 days to 28 days or 56 days), and determine age at 28 days is same as the testing result of ASTM C1293.
關鍵字(中) ★ 鹼-骨材反應
★ 卜作嵐材料
★ 抑制
關鍵字(英) ★ alkali-aggregate reaction
★ pozzolan materials
★ mitigate
論文目次 摘要 I
ABSTRACTII
誌謝 IV
目錄V
圖目錄 IX
照片目錄 XVI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 論文架構 2
第二章 文獻回顧 3
2-1 鹼-骨材反應(Alkali-Aggregate Reaction)概論 3
2-2 鹼-骨材反應的分類 3
2-2-1 鹼-氧化矽反應(Alkali- Silica Reaction;ASR) 4
2-2-2 鹼-碳酸鹽反應(Alkali-Carbonate Reaction;ACR) 5
2-2-3 鹼-矽酸鹽反應(Alkali-Silicate Reaction) 6
2-3 鹼-氧化矽反應的機制 6
2-4 影響鹼-骨材反應的因素 8
2-4-1 反應性骨材的影響 8
2-4-2 混凝土總鹼含量的影響 11
2-4-3 水的影響 11
2-5 抑制鹼-骨材反應的方法 12
2-6 卜作嵐材料抑制鹼骨材反應的機制 13
2-7 悲極效應(pessimum effect)簡介 15
2-8 卜作嵐材料用量的悲極效應 18
2-9 卜作嵐材料用量對混凝土性質的影響 21
2-10 比較ASTM C1567與ASTM C1293 24
第三章 試驗計劃與方法 27
3-1 試驗規劃 27
3-2 試驗變數 29
3-3 試驗材料 30
3-3-1 水泥 30
3-3-2 卜作嵐材料 30
3-3-3 骨材 34
3-3-4 NaOH藥劑 37
3-4 試驗方法與步驟 37
3-4-1 骨材反應潛能之化學試驗(ASTM C289,Chemical Method) 38
3-4-2 加速水泥砂漿棒試驗 (ASTM C1260,Accelerater Mortar-Bar Method): 44
3-4-3 加速水泥砂漿棒試驗 (ASTM C1567,Accelerater Mortar-Bar Method) 47
3-4-4 水泥砂漿棒試驗 (ASTM C227 Mortar bar test) 47
3-4-5 混凝土角柱試驗 (ASTM C1293 Concrete prism test) 50
第四章 試驗結果與討論 57
4-1 鹼-骨材反應案例調查 57
4-2 粒料反應性檢測 66
4-2-1 粒料反應潛能之化學試驗(ASTM C289) 66
4-2-2 加速水泥砂漿棒膨脹試驗(ASTM C1260) 68
4-2-2 水泥砂漿棒膨脹試驗(ASTM C227) 69
4-2-3 混凝土角柱膨脹試驗(ASTM C1293) 70
4-3 以高耐熱玻璃檢驗卜作嵐材料抑制成效 74
4-4 添加卜作嵐材料之抑制膨脹歷時曲線 78
4-4-1 加速水泥砂漿棒試驗(ASTM C1567) 78
4-4-2 水泥砂漿棒試驗(ASTM C227) 79
4-4-3 混凝土角柱膨脹試驗(ASTM C1293) 79
4-5 綜合討論 88
4-5-1 卜作嵐材料用量對抑制成效的關係 88
4-5-2 比較鹼量1.25%與2.0%之抑制成效 94
4-5-3 比較爐灰、120級爐石與100級爐石抑制效果 101
4-5-4 討論ASTM C1567與ASTM C1293之ㄧ致性 107
第五章 結論與建議 117
5-1 結論 117
5-2 建議 119
參考文獻 120
參考文獻 1. 公共工程飛灰混凝土使用手冊,行政院公共工程委員會(1999)
2. 公共工程爐石混凝土使用手冊,行政院公共工程委員會(2001)
3. 田永銘、楊世和,「台灣東部反應性骨材之探討及分析」,East Asia Alkali-Aggregate Seminar,Tottori,Janpan,pp13-26(1997)。
4. 田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」, 構造物破壞原因探討與處置研討會論文集,台北,第125-150 頁(1999)。
5. 田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94 頁(1999)。
6. 林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程學系,中壢( 1999)。
7. 田永銘、王淑慧、彭柏翰、賴武德,「台灣安山岩質骨材之鹼反應行為」,第五屆結構工程研討會,台中,第643~651 頁(2000)。
8. 田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226 頁(2000)。
9. 林志寶,「台灣骨材鹼反應潛能資料庫建置」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
10. 陳仁達.「花東地區鹼-骨材反應及防治方法」,碩士論文,國立中央大學土木工程學系,中壢(1998)
11. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢( 2000)。
12. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
13. 彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
14. 楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
15. ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004).
16. ASTM C289-02, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004)
17. ASTM C1260-01, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647 (2004).
18. ASTM C1567-04, “Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerater Mortar-Bar Method),” Annual Book of ASTM Standards (2004).
19. ASTM C1293-01,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (2004).
20. ASTM C618-03,“Standard Speciflication for Coal Fly Ash and Raw or Calcined Pozzolan for Use in Concrete,” Annual Book of ASTM Standards, pp.319-312(2004).
21. ASTM C595-05, ”Standard Specification for Blended Hydraulic Cements,” Annual Book of ASTM Standards.(2004)
22. ASTM C989-99,“Standard Speciflication for Ground Granulated Blast-Furnace Slag for Use in Concrete and Motars,” Annual Book of ASTM Standards, pp.527-531(1999).
23. ACI 266.3R-87, Use of Fly Ash in Concrete,” ACI manual of concrete Practice, Part1: Materials and General Properties of Concrete, 29 pp.(1987)
24. ACI 318-95, “Building Code Requirements for Structural Concrete,” ACI manual of concrete Practice, Part3: Using of Concrete in Building-Design, Specifications, and Related Topics, 345 pp.(1996)
25. Barisone, G., and Restive, G., “Alkali-Silica Reactivity of Some Italian Opal and Flints Tested Using a Modified Mortar Bar Test,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.239-246(2000).
26. Berra, M., Mangialardi, T. and Paolini, A. E. “Application of the NaOH bath test method for assessing the effectiveness of mineral admixtures against reaction of alkali with artificial siliceous aggregate,” Cement & Concrete Composites, Vol. 16, pp. 207-218(1994).
27. Bouzoubaâ, N., Bilodeau, A., and Fournier, B., “Use of Fly Ash and Slag in Concrete:A Best Practice Guide," CANMET Report MTL 2004-16 (TR-R), Natural Resources Canada, Ottawa, January 2005.
28. Chatterji, C., “An accelerated method for the detection of alkali-aggregate reaction of aggregate,” Cement and Concrete Research, Vol.8, pp.647-650(1978).
29. Chang-Seon, S., Shondeep, L., Sarkar, P.E., and Dan, G., Zollinger, P. E., “Testing the Effectiveness of Class C and Class F Fly Ash in Controlling Expansion due to Alkali-Silica Reaction Using Modified ASTM C 1260 Test Method,” Journal of Materials in Civil Engineering, Vol. 16, No. 1, pp. 20-27(2004).
30. Collins, R.J., and Bareham, P.D. “Alkali-Silica Reaction: Suppression of Expansion Using Porous Aggregate,” C.C.R., PP.89-96(1994).
31. Diamond, S., “ASR-Another Look at Mechanisms,” ICAAR, 8th International Conference, PP.83-94.(1989).
32. Duchesne, J., Marc-Andre´, B., “Long-term effectiveness of supplementary cementing materials against alkali–silica reaction,” Cement and Concrete Research, Vol. 31, pp. 1057-1063(2001).
33. Farbiarz, J. D. C., Schuman, R. L., Carrasquillo and Snow P. G., “Alkali-Aggregate Reaction in Fly Ash Concrete,” 8th International Conference on Alkali-Aggregate Reaction, Japan, pp.241-246(1989).
34. Ferraris, C., Garboczi, E., Stutzman, P., Winpigler, J., Clifton, J., "Influence of Silica Fume on the Stresses Generated by Alkali-Silica Reaction," Cement, Concrete, and Aggregates, Vol. 22, No. 1, pp. 73-78(2000).
35. Ferna´ndez-Jime´nez, A., and Puertas, F., “The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate,” Cement and Concrete Research, Vol. 32, pp. 1019-1024(2002).
36. George, J. Z., X., Daniel F. W., and Peter, P. H., “Effectiveness of mineral admixtures in reducing ASR expansion.” Cement and Concrete Research, Vol. 125, pp. 1225-1236(1995)
37. Grosbois, D., and Fontaine, E., “Performance of the 60℃ -Accelerated Concrete Prism Test for the Evaluation of Potential Alkali-Reactivity of Concrete Aggregates,” Proceedings of the 11th International Conference onAlkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.277-286(2000).
38. Hester, D., McNally, C., and Richardson, M., “A study of the influence of slag alkali level on the alkali–silica reactivity of slag concrete,” Construction and Building Materials, Vol. 19, pp. 661-665(2005).
39. Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford,London, (1988).
40. Hooton, R.D., Stanish, K., and Prusinski, J., “The Effect of Ground, Granulated Blast Furnace Slag (Slag Cement) on the Drying Shrinkage of Concrete - ACritical Review of the Literature,” Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume,Slag and Natural Pozzolans in Concrete, Supplementary Papers Volume, American Concrete Institute.(2004).
41. Ineson, P. R., Siliceous Components in Aggregates, Cement & Composites, Vol.12, p.185-190(1900).
42. Kazuyuki, T., Hiroichi, T., Ampadu, K. O., Takuya, E., “Compatibility between ecocement produced from incinerator ash and reactive aggregates in ASR expansion of mortars,” Cement and Concrete Research, Vol. 33, pp. 571-577(2003).
43. Kobayashi, K., Shiraki, R., and Kawai, K., “Influence of Alkali Concentration and Distribution Occurring in Concrete Members on Expansion Due to Alkali-Silica Reaction,” Proceeding 8thInternational Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.641-646 (1989).
44. Katayama,T.,“Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products,” East Asia Alkali-Aggregate Reaction Seminar, Tottori, Japan, (1997).
45. Lane, D. S., “Comparison of Results from C441 and C1293 with implications for Estabilishing Criteria for ASR-Resistant Concrete,” Cement, concrete,and aggregates, Vol. 21, No.2, pp. 149-156(1999).
46. Lane, D. S., and Ozyildirum, C., “Evaluation of the Effect of Portland Cement Alkali Content, Fly Ash, Ground Slag, and Silica Fume on Alkali Slica Reactivity,” Cement, concrete,and aggregates, Vol. 21, No.2, pp. 126-140(1999).
47. Lane, D. S., Ozyildirim, C., “Preventive measures for alkali-silica reactions,” Cement and Concrete Research, Vol. 29, pp. 1281-1288(1999).
48. Ludmila, D. M., Handbook of concrete aggregates, Noyes Publications, Park Ridge, New Jersey, U.S.A.(1983).
49. Malvar, L. J., Cline, G. D., Burke, D. F., Rollings, R., Sherman, T. W., Greene, J., “Alkali-Silica Reaction Mitigation:State-of-the-art and Recommendations,” ACI Materials Journal, Vol. 99, No. 5, Sept-Oct 2002.
50. Martin, P., George, H., Joseph, P., Guide to rocks and minerals. Published by Simon & Schuster Inc. (1977).
51. Roy, D. M., Tikalsky, P. J., Scheetz, B. E., and Rosenberger, J., Arjunan, P., “Influence of Portland Cement Characteristics on Alkali Silica Reactivity,” Transportation Research Board of The National Academies.(2003)
52. Ryan, W.G., Hinczak, I. And Cook, D.J., “Engineering Properties of Slag Concretes in Australia, Evolution Over Twenty Years”, Supplemental Paper Volume, Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Third International Conference, Trondheim, Norway, pp. 667-681(1988).
53. Shayan, A., “The ‘Pessimum’ Effect in an Accelerated Motar Bar Test Using 1 M NaOH Solution at 80 ℃ ,” Cement and ConcreteComposites, Vol. 14, pp. 249-255 (1992).
54. Shayan, A., Diggins, R., and Ivanusee, I., “Effectiveness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete,” Cement and Concrete Research, Vol. 26, N0. 1, pp. 153-164(1996).
55. Sibbick, R. G., and Page, C. L., “Threshold Alkali Contents For Expansion o Concretes Containing British Aggregates,” CEMENT and CONCRETE RESEARCH, Vol. 22, pp. 990-994(1991).
56. Struble, L. J., and Pade, C., “Proposed New Test Procedure for Measuring Alkali-Slica Expansion Produced by Hydraulic Cement,” Cement, concrete,and aggregates, Vol. 22, No.12, pp. 48-54(2000).
57. Shon, C. S., Sarkar, S. L., and Zollinger, D. G., “Application of Modified ASTM C1260 Test for Fly Ash-Cement Mixtures,” Transportation Research Board of The National Academies, (2003).
58. Swamy, R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
59. Tang, M.S., Deng, M., Xu, Z., Lan, X., and Han S., “Alkali-Aggregate Reaction in China,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.195-201(1996).
60. Thomas, M. D. A., and Innis, F. A., “Use of the accelerated mortar bar test for evaluating the efficacy of mineral admixtures for controlling expansion due to alkali-silica reaction,” Cement, Concrete, and Aggregates, Vol. 21, No. 2, pp. 157-164(1999).
61. Urhan, S., "Alkali Silica and pozzolanic reaction in concrete : Interpretation of published results and an hypothesis concerning the mechanism",Cement and Concrete Research, Vol.17,NO.1,pp141-152(1987).
62. Young-jin, K., “A study on the alkali-aggregate reaction in high-strength concrete with particular respect to the ground granulated blast-furnace slag effect,” Cement and Concrete Research, Vol. 35, pp. 1305-1313(2005).
63. Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F(2001).
64. Wigum, B. J., French W. J., Howarth R. J., and Hills, C., “Accelerated Tests for Assesing the Potential Exhibitted by Concrete Aggregates for Alkali-aggregate Reaction,” Cement and Concrete Composite, Vol. 19, pp. 451-476(1997).
65. Yamamoto, C., Makita, M., Moriyama, Y. and Numata, S., “Concrete Alkali-Aggregate Reaction”, ed. P.E.G. Grattanbellew, Noyes Publications,New Jersey,pp.49-54(1987)
.
指導教授 田永銘(Yong-Ming Tien) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明