以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:26 、訪客IP:3.15.203.195
姓名 盧秉瑋(Bin-Wei Lu) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 混凝土工程障壁之氯離子及失鈣劣化行為
(Degradation behavior of the chloride ion and leaching of concrete engineering barrier)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 低放射性最終處置設施之主體為混凝土,但不同於一般混凝土結構物之用途,低放射性最終處置設施的服務年限可能長達數百年之久。另外由於台灣環境氣候潮溼,四面環海,場址的選擇可能位於臨海區域且採用淺層處置,此環境利於腐蝕反應之發生,使得最終處置設施長期在此環境下可能產生劣化,進而影響混凝土長期耐久性。
本研究目的係針對低放射性最終處置設施之混凝土材料長期處於濱海環境及地表下等特有環境下,以實驗室模擬混凝土及水泥砂漿長期曝露於不良環境,探討氯離子侵蝕及失鈣等兩種劣化行為對於混凝土長期耐久性影響。試驗結果得知(1)水泥砂漿試體浸泡於硝酸銨中歷時3個月後殘餘抗壓強度約為原試體抗壓強度的35%至41%,顯示混凝土失鈣現象所產生的劣化後果相當嚴重;(2)由氯離子浸泡試驗(Ponding test)與加速氯離子試驗(ACMT)結果得知使用飛灰、爐石與矽灰等卜作嵐材料皆能有效改善混凝土抵抗氯離子入侵的能力,且以飛灰及爐石之改善效果更優於矽灰;(3)由微觀分析結果顯示,水泥砂漿試體浸泡硝酸銨溶液後會加速溶出氫氧化鈣,使水泥砂漿試體因失鈣而產生劣化。
此外,運用模擬程式推估氯離子入侵混凝土之濃度剖面與浸泡試驗所得實際氯離子濃度剖面十分接近,顯示使用傳輸模式可有效預估氯離子入侵混凝土之現象,未來可進一步發展,應用於低放射性廢棄物最終處置場混凝土障壁服務年限之推估。摘要(英) The structure of final disposal site for low-level radioactive is mainly made of concrete. Being different from the use of the general concrete structures, the service life of the final disposal site is expected to be over 3 hundred years. In addition, due to the humid climate and coastal geography in Taiwan, the disposal site is likely to be located at coastal areas. For a shallow underground disposal site, the near-field is subjected to severe environmental conditions and resulting in degradation of the concrete.
This research aimed at investigating the effects of the chloride ion ingress and leaching on the degradation and durability of concrete at the final disposal site, with emphasis on the influence of the severe environment in an underground coastal area. We learned from the tests that: (1)the residual compressive strength of mortar samples immersed in ammonium nitrate solution for 3 months reduced to 35%~41% of the original compressive strength, showing that the degradation of concrete by leaching is much detrimental; (2)according to the ponding test and ACMT test results, the replacement of a portion of cement with pozzolanic materials was found to effectively improve the concrete’s ability to resist chloride ingress, and the improving effects demonstrated by fly ash and slag were found to be better than silica fume; (3)the results of the microstructure observations showed that mortar samples in ammonium nitrate solution experienced accelerating leaching of CaOH2.
In addition, the chloride ion ingress profiles predicted using a diffusion model were very close to the profiles obtained from the ponding
test, indicating that the use of diffusion model is effective in predicting the phenomenon of chloride ingress to concrete. The model can be applied to predict the service life of concrete barrier of the final disposal site for low-level radioactive in the future.關鍵字(中) ★ 耐久性
★ 氯離子濃度剖面
★ 失鈣
★ 程式模擬關鍵字(英) ★ concrete barrier
★ durability
★ chloride ingress profile
★ leaching論文目次 目錄......................................Ⅰ
圖目錄....................................Ⅴ
表目錄....................................Ⅸ
第一章 緒論................................1
1.1研究動機................................1
1.2研究目的................................2
1.3研究內容................................3
第二章 文獻回顧............................5
2.1 低放射性廢棄物最終處置.................5
2.2混凝土耐久性............................9
2.2.1 混凝土耐久性之定義...................9
2.2.2 物理性侵蝕..........................10
2.2.3 化學性侵蝕..........................11
2.3 氯離子侵蝕............................14
2.3.1離子在混凝土中之傳輸機制.............14
2.3.2氯離子於混凝土內部之型態.............15
2.3.3 氯離子侵入之模式....................16
2.3.4卜作嵐掺料對抵抗氯離子侵入之影響.....18
2.3.5 混凝土飽和度對於氯離子之影響........19
2.3.6孔隙結構對混凝土滲透之影響...........20
2.3.7 佛萊第鹽類(Friedel’s salt)對氯離子影響.22
2.4 混凝土滲透試驗 ........................22
2.4.1 混凝土透水試驗......................23
2.4.2 快速氯離子滲透試驗(RCPT)..........23
2.4.3 加速氯離子移動試驗(ACMT)..........25
2.4.4 氯離子浸泡試驗(ponding test)........26
2.5 失鈣劣化(Leaching)....................27
2.5.1 失鈣劣化之過程與機理................28
2.5.2鈣離子溶出劣化對水泥漿體孔隙之影響...29
2.5.3影響水泥漿體溶出劣化因素.............29
2.5.4 失鈣劣化深度........................31
2.5.5 失鈣劣化對力學性質之影響............31
2.6 敏感度分析程式 .......................33
第三章 實驗計畫...........................35
3.1 實驗材料..............................35
3.2 主要實驗設備..........................40
3.3 實驗內容與方法 .......................46
3.3.1 實驗流程............................46
3.3.2 實驗變數............................49
3.3.3 實驗方法............................52
第四章 結果與討論.........................62
4.1 抗壓強度..............................62
4.1.1 不同配比混凝土之抗壓強度發展........62
4.1.2 不同配比水泥砂漿之抗壓強度發展......64
4.1.3 不同配比水泥砂漿受鈣離子溶出之抗壓強度發展..67
4.2 氯離子浸泡試驗(AASHTO T259 Ponding test)......72
4.2.1氯離子入侵模式...............................72
4.2.2 氯離子入侵深度..............................82
4.2.3 氯離子浸泡試驗之擴散係數....................85
4.3 氯離子加速試驗(ACMT)..........................91
4.4 Ponding test擴散係數與ACMT穩態擴散係數之關係..95
4.5微觀分析.......................................98
4.5.1熱重分析(TGA) ................................98
4.5.2 掃描式顯微鏡之能量分散光譜(SEM-EDS)..........102
第五章 敏感度分析..................................106
5.1參數敏感度分析..................................106
5.1.1 參數意義.....................................108
5.2 氯離子侵入剖面之參數分析.......................113
5.2.1 環境參數(environment parameter)..............113
5.2.2 配比參數(mixes parameter)....................114
5.2.3 擴散係數參數(diffusion coefficients parameter)..118
5.2.4 氯離子結合參數(Chloride ion binding parameter)..120
5.2.5 鋁質與氯離子反應率參數..........................120
5.3 模擬結果驗證......................................121
5.3.1 模擬結果驗證....................................121
5.4 小結..............................................125
第六章 結論與建議.....................................126
6.1 結論..............................................126
6.2建議...............................................128
參考文獻..............................................130參考文獻 王和源,「高性能混凝土滲透性量測之研究」,高雄應用科技大學學報,第31期,第63-79頁 (2001)。
王信偉,「混凝土材料用於用過核子燃料乾式中期貯存設施之穩定性研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)。
王茂齡, 「輸送現象」, 高立圖書有限公司 (1987)。
王櫻茂,「混凝土結構物的耐久性系列-鹼骨材反應(Ⅰ)中性化(Ⅱ)」 ,國立成功大學土木結構材料試驗室,台南,第278-280頁(2000)。
李明君,李釗,「使用飛灰等摻料製作高強度混凝土之探討」,應用礦物摻料提昇混凝土品質,台灣營建研究院 (1999)。
行政院原子委員會放射性物料管理局,http://fcma.aec.gov.tw (2006)。
卓世偉,「加速氯離子動試驗探討氯離子於水泥基複合材料中之傳輸行為」,博士論文,國立台灣海洋大學材料工程研究所,基隆 (2002)。
陳柏忠,「用過核子燃料乾式中期貯存設施之混凝土耐久性研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2005)。
黃兆龍,「混凝土性質及行為」,詹氏書局 (1999)。
黃兆龍,「高性能混凝土理論與實務」,詹氏書局 (2003)。
蘇南,「高爐石粉對混凝土耐久性之影響」,應用礦物摻料提昇混凝土品質,台灣營建研究院(1999)。
AASHTO T259-90 (1990), ”Resistance of Concrete to Chloride Ion Penetration,” AASHTO Designation.
AASHTO T260 (1997), ”Sampling and Testing for Chloride Ion in Concrete and Concrete Raw materials,” AASHTO Designation.
ACI Committee 201.2R (1992), “Guide to durable concrete,” ACI Manual of Concrete Practice.
ACI Committee 349 (1997), “Code Requirements for Nuclear Safety Related Concrete Structures,” ACI Manual of Concrete Practice.
Andrade, C. (1993), “Calculation of chloride coefficients in concrete from ionic migration measurements,” Cement and Concrete Research, Vol. 23, pp. 724-742.
Andrade, C., Diez, J. M. and Alonso, C.(1997), ”Mathematical Modelling of a Concrete Surface "Skin Effect" on Diffusion in Chloride Contaminated Media,” Advances in Cement-Based Materials, Vol. 6, pp. 39-44.
Bai, J., Wild, S. and Sabir, B. B. (2003), ”Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater,” Cement and Concrete Research, Vol. 33, pp.353-362.
Bentz, D. P., Clifton, J. R. and Snyder, K. A.(1996), “Predicting service life of chloride-exposed steel-reinforced concrete,” American Ceramic Society, Westerville.
Brandt, A. M. (1995), ”Cement-based Composites: material, Mechamical Properties and Performance ,” Frist edition.
CIKS(URL):http://ciks.cbt.nist.gov/~bentz/welcome.html
Crank, J. (1975), The Mathematics of Diffusion, Oxford University Press, Second Edition.
Carde, C. and Francois, R.(1997), “Effect of the Leaching of Calcium Hydroxide Cement Paste on Mechanical and Physical Properties,” Cement and Concrete Research, Vol. 27, No. 4, pp. 539-550.
Carde, C. and Francois, R. (1999), “Modelling the Loss Strength and Porosity Increase due to the Leaching of Cement Pastes,” Cement and Concrete Composities, Vol. 21, pp. 181-188.
Climent, M. A., deVera, G., Lopez, J., Garcia, C. and Andrade, C.(2000), “Transport of Chloride through non-staturated concrete after an initial limited chloride supply,” RILEM Proceedings, Pro 19, pp.173~187.
.
Flatt, R. J.(2004), ”Dispersion force in cement suspension”, Cement and Concrete Research, Vol.34, pp. 399-408.
Han, K., Heinonen, W. J. and Bonne A. (1997), “Radioactive Waste Disposal:Global Experience and Challenges,” IAEA Bulletin, Vol. 39, pp.33.
Jazairi, B. E. and Illston, J. M. (1980), “The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry,” Cement and Concrete Research, Vol. 10, pp.361-366.
Mehta, P.K. (1986), Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Nillsson, L., Poulsen, E., Sandberg, P. H., Sorense, E. and Klinghoffer, O. (1996), ”Chloride Penetration Into Concrete, State-of-the-Art, Transpoir Processes, Corrosion Initation, Test Methods and Prediction Models,” The Road Directorate, Copenhgen.
Nillson, L. (2000), ”A numerical model for combined diffusion and convection of chloride in non-saturated concrete,” RILEM Proceedings, Vol. 19, pp. 261-275.
Ramachandran, U. S., Feldman, R. F. and Beaudoin, J. J. (1981), “Concrete science”, Canada.
Saito, H. and Nakane S.(1999), “Comparison between Diffusion Test and Electrochemical Acceleration Test for Leaching Degradation of Cement Hydration Products,” ACI Material Journal, Vol. 96, No. 2, March-April, pp. 208-212.
Saito, H. and Deguchi, A.(2000), “Leaching Tests on Different Mortar Using Accelerated Electrochemical Method,” Cement and Concrete Research, Vol. 30, No. 11, pp. 1815-1825.
Saito, H., Tsuji, Y. and Kataoka, H.(2000), “A Model for Predicting Degradation due to Dissolution of Cement Hydrate,” Transaction of the Japan Concrete Institute, Vol. 22, pp. 119-130.
Sergi, G., Yu, S. W., and Page, C. L. ( 1992), “Diffusion of Chloride and Hydroxyl Ions in Cementitious Materials Exposed to a Saline Environment,” Magazine of Concrete Research, Vol. 44, pp. 63-69.
Seng, C. K. and Hong, Z. M.(2002), “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete,” Cement and Concrete Research, Vol. 32, pp. 639-645.
Sherman, R. M., David, M. B. and Pfeifer, D. W. (1996), “Durability Aspects of Precast Prestressed Concrete-Part 1 and 2,” PCI Jurnal, Vol. 41, No. 4, pp. 60-64.
Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B. (1996), “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”, Cement and Concrete Research, Vol. 26, pp. 717-727.
Tritthart, J. and Cavlek,K.(2000), “Determination of total and free chloride in cement paste and concrete,” RILEM Proceedings, Pro 19, pp.429-437.
Young, J. F., Mindess, S. and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Zibara, H. R., Pérezfki, B., Hooton, D. M., Thomas, D. A. (2000), ”A study of the effect of chloride binding on service life predictions”, Cement and Concrete Research, Vol. 30, pp. 1215-1223.
Zhao, T. J., Zhou, Z. H., Zhu, J. Q. and Feng, N. Q. (1998), “An alternating test method for concrete permeability,” Cement and Concrete Research, Vol. 28, No. 1, pp. 7-12.指導教授 黃偉慶(Wei-Shing Hwang) 審核日期 2006-7-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare