摘要(英) |
This study performs experimental work with cylinders on the conveyor belt to simulate the initial process of landslide induced debris flow.The experimental set up consists of three parts: microscopic overturn deformation and macroscopic fluidization.
The kinetic of angular velocity and displacement of the overturn process on the top layer of the cylinders is studied. The change of porosity before and after the overturn is analyzed at different velocities (i.e. 5.08cm/s, 10.16cm/s,15.24 cm/s,20.32 cm/s), and slopes (i.e. 0°, 5°, 10°,15°, 20°),respectively.
The particle image algorithm is used to study the deformation on the bottom of the assemble cylinders by shearing force. The change of porosity before and after the failure is analyzed at different velocities (i.e. 4.17cm/s, 12.34cm/s), and slopes (i.e. 0°, 20°). We establish a method to measure the deformation, angular velocity and porosity of particles. The experimental results show that region of the shearing zone increases as the velocity of the conveyor belt, increases.
Different belt velocities (i.e. 4.17cm/s, 12.34cm/s) affect the thickness of fluidization, and lead to two opposite results on the decay rate of PVC, and steel layers under the same experimental conditions. The sequence of cylinders flowing out the confined zone is strongly related to the gap clearance. When the gap is raised, the leading side of cylinders will flow out first while the gap becomes low, the tailing side and bottom parts of cylinders will flow out first. |
參考文獻 |
中文部分
1. 吳京霖,「砂粒受水平振動行為之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2001) 。
2. 彭子軒,「慢顆粒流之輸送帶實驗與影像分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2002) 。
3. 周東寬,「二維斜坡顆粒流之輸送帶實驗與分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2003) 。
4. 張耀文,「圓柱堆變形破壞與流體化現象之輸送帶實驗分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2004) 。
5. 周憲德,「邊坡破壞與崩塌轉化成土石流之研究(一)」,行政院國家科學委員會專題研究計畫成果報告,第1-30頁 (2002) 。
6. 周憲德,「邊坡破壞與崩塌轉化成土石流之研究(二)」,行政院國家科學委員會專題研究計畫成果報告,第1-38頁(2003) 。
7. 周憲德、張藝耀,「斜坡堆積圓球及圓柱受水平振動時之傾斜角分析」,中國土木水利工程學刊,第十六卷,第一期,第145-154頁 (2004) 。
8. 周漢祥,「圓柱堆變形破壞之輸送帶實驗分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2004) 。
英文部分
9. Capart, H., “Dam-break induced geomorphic flows and the transition from solid- to fluid-like behavior across evolving interfaces,” PhD thesis, UCL, Belgium (2000).
10. Capart, H., Young, D.L., and Zech, Y., “ Voronoï imaging methods for the measurement of granular flows , ” Exp. Fluids, Vol.32, pp. 121-135 (2002).
11. Dury, C.M., and Ristow, G.H., “Boundary effects on the angle of repose in rotating cylinders,” Physical Review E, Vol. 57, No.4, pp.4491-4496 (1998).
12. Denlinger, R.P., and Iverson, R.M., “Flow of variably fluidized granular masses across three-dimension terrain: 2.Numerical predictions and experimental tests,” Journal of Geophysical. Research,” Vol. 106, No.B1, pp.553-566 (2001).
13. Gray, J.M.N.T., M. Wieland, and K. Hutter, “Gravity driven free surface flow of granular avalanches over complex basal topography,” Proc. R. Soc. London, Ser. A, 455, pp.1841-1874 (1999).
14. Hanes, M.D., and Inman, D.L., “Experimental Evaluation of a Dynamic Yield Criterion for Granular Fluid Flows,” Journal of Geophysical. Research, Vol. 90, No.B5, pp.3670-3674 (1985).
15. Iverson, R.M., Reid, M.E., and LaHusen, R.G., “Debris-flow mobilization from landslides,” Annual Review of Earth and Planetary Sciences 25, pp.85-138 (1997).
16. Iverson, R.M., “The physics of debris flows,” Reviews of Geophysics, Vol. 35, No. 3, pp.245-296 (1997a).
17. Iverson, R.M., and Vallance, J.W., “New view of granular mass flows,” Journal of Geology, Vol. 29, No.2, pp.115-118 (2001).
18. Iverson, R.M., and Denlinger, R.P., “Flow of variably fluidized granular masses across three-dimension terrain: 1.Coulomb mixture theory,” Journal of Geophysical. Research, Vol. 106, No.B1, pp.537-552 (2001).
19. Radjai, F. “Friction-induced self-organization of a one-dimensional array of particles,” Physics Review E, Vol. 51, No.6, pp.6177-6187 (1995).
20. Savage, S.B., and Hutter, K., “The motion of a finite mass of granular material down a rough inclines,” J. Fluid Mech. Vol. 199, pp.177-215 (1989)
21. Radjai, F., Evesque, P., Bideau, D., and Roux, S., “Stick-slip dynamics of a one-dimensional array of particles,” Physical Review E, Vol. 52, No.25, pp.5555-5564 (1995).
22. Savage, S. B. and Hutter, K., “The motion of a finite mass of granular material down a rough incline,” Journal of Fluid Mechanics, Vol.199, pp.177-215 (1989).
23. Savage, S. B. and Hutter, K., “The dynamics of avalanches of granular materials from initiation to runout, part I, Analysis,” Acta Mech., 86, pp.201-223 (1991). |