博碩士論文 93322057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.136.25.249
姓名 周辰穎(Chen-Ying Chou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 陣風效應對風力機發電量影響之實驗研究
(Experimental Study of the Turbulence Effect on the Wind Turbine Performance)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以風洞實驗的方式探討風力機在穩態風場、特定頻率陣風風場與格網紊流風場中的發電情形,並針對兩種不同的風力機:阻力型的Rutland 913風力機以及升力型的Air-X風力機比較其性能。研究結果顯示:升力型之風力機的翼端速度比會較高,且會有較佳之發電效率;但是阻力型之風力機則有啟動風速較低及較安靜的優點,所以較適合設置於地狹人稠的都市地區。而非穩態風場中的發電情形,本研究以準穩態假設(Quasi-Steady Hypothesis)計算風力機之發電量,並與實驗之結果與進行比對,結果顯示由於風力機的動態特性,所以準穩態假設會高估風力機在非穩態風場中的發電量,本研究利用頻譜分析對準穩態假設進行修正,並對於紊流風速變化頻率高於風力機可反應頻率予以修正,再將其代入準穩態假設可得到較佳的結果。本研究之結果可幫助吾人瞭解風力機在非穩態風場中的發電情形有進一步的瞭解,可供相關工程設計之參考。
摘要(英) This experimental study investigates the output power of wind turbines in different approaching flows, which include steady flow, periodically varying flows and grid-generated turbulent flows. The experiment is carried out in a large-scale atmospheric boundary layer wind tunnel. The wind turbines consist of a drag-type turbine (Rutland 913) and a lift-type turbine (Air-X). The experimental results demonstrate that the lift-type turbine has higher tip speed ratio and better efficiency than the drag-type turbine. But the drag-type turbine has lower cut-in speed and is much quiet for installing in urban area. Moreover, the power outputs of wind turbines in unsteady flows are higher than in steady flows, but the quasi-steady hypothesis over-estimated the increase. Therefore, a spectral transfer function is developed to modify the power predictions, taking into account the response frequency of turbines. The modified model can be used to predict the power output of turbine in unsteady turbulent wind.
關鍵字(中) ★ 風力發電
★ 風洞實驗
★ 陣風
★ 紊流
★ 準穩態假設
★ 風力機
關鍵字(英) ★ turbulent wind
★ Gusty wind
★ Quasi-steady hypothesis
★ Wind turbine
★ Wind tunnel experiment
論文目次 目錄
頁次
摘要 I
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
符號表 XIII
第一章 緒 論 1
1.1 前言 1
1.2 台灣地區的風力發電現況 1
1.3 研究動機 2
1.4 研究內容及大綱 3
第二章 理論基礎與文獻回顧 5
2.1 風力發電 5
2.1.1 風力機分類 6
2.1.2 風力潛勢評估 7
2.1.3 風能理論 8
2.1.4 發電效率 10
2.2 風場特性 12
2.2.1 穩態風場 13
2.2.2 陣風風場 13
2.2.3 格網紊流風場 14
2.3 傅立葉(Fourier)頻譜分析 14
2.4 前人文獻回顧 15
第三章 實驗設備與方法 25
3.1 大型環境風洞與陣風產生器 25
3.1.1 大型環境風洞 25
3.1.2 陣風產生器(Gust generator) 26
3.1.3 格網紊流 27
3.2 訊號擷取方法 28
3.3 風速量測方法 28
3.3.1 皮托管 28
3.3.2 熱線流速儀 29
3.4 風力發電系統 30
3.4.1 風力發電機 31
3.4.2 監控系統設備 32
3.4.3 轉速計 34
3.5 實驗方法與步驟 34
3.5.1 實驗配置 34
3.5.2 穩態風場模擬 35
3.5.3 格網紊流風場模擬 35
3.6 實驗數據採樣技巧 36
3.6.1 雜訊處理 36
3.6.2 採樣時距 37
3.7 傅立葉頻譜分析方法 37
第四章 結果與討論 58
4.1 穩態風場 58
4.1.1 穩態風場機制 58
4.1.2 穩態風場中風力機發電情形 59
4.1.3 翼端速度比 61
4.2 陣風風場 61
4.2.1 陣風風場 62
4.2.2準穩態假設 62
4.2.3陣風風場中發電情形 64
4.2.4 相關性分析 65
4.3 格網紊流 65
4.3.1 紊流特性 66
4.3.2紊流風場中發電情形 67
4.4 準穩態模式修正 68
4.4.1 反應時間 (Response Time) 68
4.4.2 修正方法 69
4.5 風力機動態特性 70
4.5.1轉換函數 71
4.5.2 發電量預測方法 72
4.6 誤差分析 74
第五章 結論與建議 111
5.1 結論 111
5.2建議 112
參考文獻 113
參考文獻 1. 陳守誠 (2002) “太陽能與風力發電複合系統之研製”, 台灣科技大學電機工程學系碩士論文
2. 黃昌圳 (2002) “小容量風力發電機的研製”, 逢甲大學電機工程學系碩士班碩士論文
3. 黃恆倫 (2004) “風力發電之網路連接動態模擬”, 中山大學電機工程學系碩士論文
4. 嚴坤政 (2004) “小型風力發電系統設置與葉片氣動力分析”, 南台科技大學機械工程學系碩士班碩士論文
5. 中華民國行政院環保署 (2004) “環境白皮書(94年修訂版)”, 行政院環境保護署印行
6. 楊富傑 (2005) “以HHT時頻分析法研究陣風風場中建築物之表面風壓”, 國立中央大學土木工程系碩士論文
7. 朱佳仁 (2006) ”風工程概論” , 科技圖書出版公司印行
8. Ahmed Shata, A.S. and Hanitsch R. (2006) “Evaluation of Wind Energy Potential and Electrity Generation on the Coast of Mediterranean Sea in Egypt”, Renewable Energy, Vol.31, pp.1183–1206
9. Rauh, A., and Peinke J. (2004) “A phenomenological model for the dynamic response of wind turbines to turbulent wind”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.92, pp.159-183
10. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi E. (2001) Wind Energy Handbook, Johns Wiley & Sons, Inc.
11. Celik, A.N. (2003) “Energy Output Estimation for Small-scale Wind Power Generators using Weibull-representive Wind Data”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.91, pp.693–707
12. Cheng, P.W., Bierbooms, A.A.M. (2001) “Distribution of extreme gust loads of wind turbines”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.89, pp.309–324
13. Chu, C.R. (1990) “Near-surface Turbulent Velocity and Oxygen Concentration Measurements in a Grid-stirred Tank”, Master Thesis, Cornell Univ.
14. Davenport, A.G. (1961) “The spectrum of horizontal gustiness near the ground in high wind”, Quart. J. Roy. Meteor. Soc., Vol.87, pp.194-211
15. Gurley, K., Tognarelli, M. and Kareem, A. (1997) "Analysis and Simulation Tools for Wind Engineering", Probabilistic Engineering Mechanics, 12(1), pp.. 9-31
16. Haritos, N. and Stevens L.K. (1983) “The Assessment of Response of Tall Free-standing Towers to Along-wind Loading ”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.14, pp.331–344
17. Manwell J.F. and Kirchhoff R.H. (1985) “Wind Energy From Turbulence: Constant Tip Speed Ratio Operation”, Solar Energy”, Vol.34, No.1, pp.59–67
18. Kaimal, J.C. and Finnigan, J.J. (1994) Atmospheric Boundary Layer: Their Structure and Measurement, Oxford University Press, p.289
19. Kang, H.S., Chester, S. and Meneveau, C. (2003) “Decaying Turbulence in an Activegrid-generated Flow and Comparsions with Large Eddy Simulation”, J. Fluid Mech., Vol.480, pp. 128–160
20. Kolmogorov, A. (1941) “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, Dokl. Akad. Nuak, SSSR, 30, pp.301-305
21. Mathieu J. and Scott J., (2000) An Introduction to Turbulent Flow, Cambridge Univeraity Press
22. McIver A., Holmes D.G., and Freere P. (1985) “Optimal Control of a Variable Speed Wind Turbine under Dynamic Wind Conditions”, IEEE 31st IAS Annual Meeting, pp.1692-1698
23. Nichita, C., Luca, D., Dakyo, B. and Cheanga E. (2002) “Large Band Simulation of the Wind Speed for Real Time Wind Turbine Simulators”, IEEE Transactions on Energy Conversion, Vol.17, No.4, pp.523–529
24. Rauh, A. and Peinke, J. (2004) “A Phenomenological Model for the Dynamic Response of Wind Turbines to Turbulent Wind”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.92, pp.159–183
25. Rosen, A. and Sheinman, Y. (1991) “A dynamic model for Performance Calculations of Grid-Connected Horizontal Axis Wind Turbines Part II – Validation”, Journal of Wind Engineering, Vol.15, No.4 pp.229–239
26. Sheinman, Y. and Rosen, A. (1991) “A dynamic model for Performance Calculations of Grid-Connected Horizontal Axis Wind Turbines Part I – Description of the Model”, Journal of Wind Engineering, Vol.15, No.4 pp.211–228
27. Sheinman, Y. and Rosen, A. (1992) “A dynamic model of the influence of turbulence on the power output of a wind turbine”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.39, pp.329–341
28. Sheinman, Y. and Rosen, A. (1994) “The average output power of a wind turbine in a turbulent wind”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.51, pp.287–302
29. Sheinman, Y. and Rosen, A. (1996) “The Power Fluctuations of a Wind Turbine”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.59, pp.51–68
30. Shinozuka M. and Jan C.M. (1972) “Digital Simulation of Random Processes and Its Applications”, Journal of Sound and Vibration, Vol.25, pp.111–128
31. Sorensen, P., Hansen, A.D., Andre, P. and Rosas, C. (2002) “Wind models for simulation of power fluctuations from wind farms”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.90, pp.1381–1402
32. Southwest Windpower Company, (2002) “Air-X Land Owners Manual”
33. Vermeer, L.J., Sorensen, J.N., Crespo, A. (2003) “Wind turbine wake aerodynamics”, Progress in Aerospace Sciences, Vol.39, pp.467–510
34. von Karman, T. (1948) “Progress in the statistical theory of turbulence”, Proc. Nat. Acad. Sci., Washington D.C., pp.530-539
35. Welfonder, E., Neifer, R. and Spanner M. (1996) “Development and Experimental Identification of Dynamic Models for Wind Turbines “, Contr. Eng. Practice, Vol.5, No.1, pp.63–73
36. Wright, A.K., Wood, D.H. (2004) “The Starting and low wind speed behaviour of a small horizontal axis wind turbine”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.92, pp.1265–1279
37. Yeung, W.W.H. (2004) “Similarities of pressure induced by separation bubble in grid-generated turbulent flow”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.93, pp.293–309
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2006-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明