以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:75 、訪客IP:18.117.166.193
姓名 鍾國華(Kua-Hua Chung) 查詢紙本館藏 畢業系所 工業管理研究所 論文名稱 利用企業資源規劃以及商業智慧資料產生銷售面績效評估指標
(Generating Sales Performance Criteria from Consideration of ERP Transactional Data and Business Intelligence)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 現今的企業資料倉儲,提供許多面向的績效評估指標供管理者使用。而企業資料倉儲是被企業用來做分析應用的商業智慧的核心。在本研究中,將利現存的公式結構應用到SAP企業資源規劃系統中的交易資料以去產生績效評估指標,提供更多的績效評估指標以補充現有有限數量績效評估指標。
在本研究中主要有幾個問題需要探討:我們要如正確得從企業資源規劃系統中萃取用來產生績效評估指標的資料;現行萃取出的資料要利用何種方式將其作有效的歸納以及分類;如何分析現行的績效評估公式的結構,且結合原始資料以產績效評估指標。
本研究主要以模組化的流程角度分析,利用企業資源規劃系統中所提供的資料做為研究基礎。資料來源為SAP企業資源規劃系統中的屬性(attributes)資料以及SAP BI中的InfoCubes和Queries。利用thesaurus的方法進行資料分類及呈現。再將資料利用二元表示樹的方式分析公式結構,將其中的運算子進行分類,並將公式結構應用於所萃取的企業規劃系統中的資料,以產生更多的績效評估指標。
本研究藉由利用thesaurus分析所萃取的資料,將資料進行分類歸納,以此為基礎之下,再將資料應用於公式結構中,產生關於SAP 企業資源規劃系統中的企業績效評估指標,再以SAP BI所產生的績效評估指標做比較。摘要(英) Business Information Warehouse (BW) provides many aspects of KPIs for managers to use. BW is the core of business intelligence and then provides many data of business content to be analyzed into analytical applications. First BW constructs the data model by OLAP and provides much information that is related to the ERP. In our research, we want to discover more KPIs from existing formulas and apply the methodology to the data of SAP ERP system that is stored in SAP R/3 repository. As we can see, the existing indexes are finite and the main question that we want to solve is how to generate these more KPIs with these data that is stored in SAP BI and SAP R/3.
Therefore we have three sub-problems to should be solved. The first is how we extract the proper data from SAP BI and SAP R/3. The second is how we analyze these data systematically. And the last one is how we apply these formulas that exist in SA P BI to generate more indexes that we need. Here we extract data from attribute of SAP R/3, InfoCubes and Queries in SAP BI to be the raw data that we want to use. We use binary expression tree to construct formula structures and from formula structures, we try to find out operator class that can also apply to the data in ERP system. With operator class and data of ERP system, we generate possible KPI candidates.
We compare the efficiency from KPI generation between SAP R/3 and SAP BI. We mainly generate indexes from the data types of quantity and currency. Here we can’t just generate the original indexes but also more indexes that can be used by the managerial meaning.關鍵字(中) ★ 辭典
★ 字幹化
★ 建立績效評估指標
★ 二元表示樹關鍵字(英) ★ stemming
★ thesaurus
★ building indexes
★ binary expression tree論文目次 Table of Content
摘要 i
Abstract ii
Table of Content iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Research problem 3
1.3 Research objective 4
1.4 Research methodology and framework 4
1.4.1 Research methodology 4
1.4.2 Research framework 5
Chapter 2 Literature review 7
2.1 Review the process of order fulfillment 7
2.2 Text operation of Thesaurus 8
2.3 Schemas of data warehouse 11
2.4 Database design based on entity-relationship model 12
Chapter 3 Methodology developing 16
3.1 Thesaurus construction of ERP data and key figures and queries in SAP BI 16
3.1.1 Constructing the thesaurus of SAP ERP system 18
3.1.1.1 Data preprocessing 18
3.1.1.2 Data stemming 24
3.1.1.3 Concept-based thesaurus constructing 28
3.1.2 Constructing the thesaurus of SAP BI 32
3.1.2.1 Data preprocessing 32
3.1.2.2 Data stemming 39
3.1.2.3 Concept-based thesaurus constructing 41
3.2 Construction of formula structure 46
3.3 Generation of KPIs 55
3.3.1 Generate KPIs for SAP BI 55
3.2.1 Generate KPIs for SAP R/3 56
3.4 Building the dimension model 61
3.4.1 Resources of dimensions and attributes 61
3.4.2 Finding out dimensions and attributes 62
Chapter 4 Application 64
4.1 Construction of thesaurus of data type of Quantity 64
4.2 Generated KPIs of data type of Quantity 74
4.3 Construction of dimension model 76
4.4 Apply the methodology to data type of Currency 77
4.4.1 Construction of thesaurus of data type of CURR 77
4.4.2 Generation of KPIs of data type of CURR 87
Chapter 5 Conclusion 94
5.1 Research contribution 94
5.2 Research limitation 94
5.3 Future research 95
Reference 96
Appendix A. InfoCubes of order fulfillment in BI 100
Appendix B. Queries of order fulfillment in BI 119
Appendix C. InfoCubes of forecasting and replenishment, sales scheduling and processing in BI 132
Appendix D. Queries of forecasting and replenishment, sales scheduling and processing in BI 150
Appendix E. KPIs generated from SAP R/3 (data type of QUAN) 159
Appendix F. KPIs generated from SAP R/3 (data type of CURR) 161
Appendix G. KPIs generated from key figures and queries in SAP BI (data type of QUAN) 166
Appendix H. KPIs generated from key figures and queries in SAP BI (data type of CURR) 185
List of Figures
Figure 1.1 Research framework 6
Figure 2.1 Concept-based thesaurus 9
Figure 2.2 Fact table and dimension table in a star schema (source: Ralph Kimball, The data warehouse lifecycle toolkit, p. 168) 11
Figure 2.3 Fact table and dimension table in snowflake schema (source: Ralph Kimball, The data warehouse lifecycle toolkit, p. 171) 11
Figure 2.4 Metamodel of hierarchy classification 12
Figure 2.5 Summary of entity cluster levels for the publishing application (source: Toby Teorey, Database modeling and design: the entity-relationship approach, p.246) 13
Figure 2.6 Clustered entity-relationship diagram for an automated entity (source: Tavana, Joglekar, Redmond, 2007) 14
Figure 2.7 Schema of hierarchical nature of relationship of New York Times (Halper, Geller, Perl, 1998) 15
Figure 3.1 Process of constructing thesaurus (A simple example abstracted from SAP R/3 framework) 18
Figure 3.2 (a) Partial original hierarchy of Thesaurus of SAP R/3 framework 29
Figure 3.2 (b) Partial original hierarchy of Thesaurus of SAP R/3 framework (added in patterns generated from descriptions of attributes) 30
Figure 3.2 (c) Linking descriptions of other attribute (link B to A, if description matches patterns of A) 30
Figure 3.2 (d) Linking descriptions of other attribute (link A to B, if description matches patterns of B) 31
Figure 3.2 (e) Partial hierarchy of Thesaurus of SAP R/3 framework (linking more descriptions of attribute by using pattern of single word “quantity” ) 31
Figure 3.3 (a) Generating patterns from attributes and data entities in SAP R/3 44
Figure 3.3 (b) Linking key figures and queries by using patterns of attribute and data entities 44
Figure 3.3 (c) Partitial structure of thesaurus of SAP BI 45
Figure 3.4 Formula structures from table 3.9 52
Figure 3.5 Three types of combined formula structures 52
Figure 3.6 Partial SAP BI hierarchy to show which data entity operand belongs to 57
Figure 3.7 (a) Patterns generated from operends in SAP BI under related data entities 59
Figure 3.7 (b) Searching related operands in SAP R/3 hierarchy by using patterns of operands in SAP BI 60
Figure 4.1 Thesaurus of SAP R/3 framework 66
Figure 4.2 Thesaurus of sales in SAP R/3 framework 67
Figure 4.3 Thesaurus of shipping in SAP R/3 framework 68
Figure 4.4 Thesaurus of billing in SAP R/3 framework 69
Figure 4.5 Thesaurus of sales support in SAP R/3 framework 70
Figure 4.6 Thesaurus of SAP BI 71
Figure 4.7 Thesaurus of sales in SAP BI 73
Figure 4.8 Thesaurus of shipping in SAP BI 73
Figure 4.9 Dimension model of order fulfillment 77
Figure 4.10 Thesaurus of SAP R/3 framework (Data type of CURR) 81
Figure 4.11 Thesaurus of sales in SAP R/3 framework (Data type of CURR) 82
Figure 4.12 Thesaurus of billing in SAP R/3 framework (Data type of CURR) 83
Figure 4.13 Thesaurus of SAP BI (Data type of CURR) 84
Figure 4.14 Thesaurus of sales in SAP BI (Data Type of CURR) 85
Figure 4.15 Thesaurus of billing in SAP BI (Data Type of CURR) 86
Figure 4.16 Three typess of combined formula structures (Data type of CURR) 88
List of Tables
Table 3.1 Proportional data extracted from SAP R/3 (bold word) 19
Table 3.2 Proportional data from SAP R/3 framework 24
Table 3.3 (a) Table of Attribute for stemming (including attributes of data type of QUAN) 27
Table 3.3 (b) Table of Attribute for stemming (including attributes of data type of QUAN) 28
Table 3.4 BI content 33
Table 3.5 Table of InfoObject’s description from key figures in InfoCubes 38
Table 3.6 (a) Table of Data entity for stemming (including attributes of data type of QUAN) 39
Table 3.6 (a) Table of Data entity for stemming (including attributes of data type of QUAN) (to be continued) 40
Table 3.6 (b) Table of Data entity for stemming (including attributes of data type of QUAN) 40
Table 3.7 Table of Business object for stemming in (including attributes of data type of QUAN) 40
Table 3.8 Word stems below process of sales of data type of QUAN from SAP R/3 framework 42
Table 3.9 Formulas from InfoCubes and Queries within SAP BI (data type of QUAN) 49
Table 3.9 Formulas from InfoCubes and Queries within SAP BI (data type of QUAN) 50
(to be continued) 50
Table 3.10 Summary of structure of formula for each item from table 3.6 52
Table 3.11 Formulas from InfoCubes and Queries within SAP BI (across different data types QUAN, CURR, DATS) 54
Table 3.12 Table of operand sets of SAP BI 56
Table 3.13 Operator class and data entities form SAP BI 57
Table 3.14 Common word of SAP BI operand from Table 3.13 (word sources are listed as bold words in Table 3.13) 58
Table 3.15 Generating patterns of operands from the same data entities in SAP BI to generate KPIs. 58
Table 3.16 Dimensions and attributes of dimension model 63
Table 4.1(a) “Columns” of queries about quantity in SAP BW (we also generate) 75
Table 4.1(b) “Columns” of queries about quantity in SAP BW (we don’t generate) 75
Table 4.2 Table of Attribute for stemming (including attributes of data type of CURR) 78
Table 4.3 Table of Data entity for stemming (including attributes of data type of CURR) 79
Table 4.4 Table of Business object for stemming (including attributes of data type of CURR) 80
Table 4.5 Formulas from key figures and queries within SAP BI (data type of CURR) 89
Table 4.6 Summary of formula structures from table 4.5 (Data type of CURR) 90
Table 4.7 Frequencies of common words (Data type of CURR) 90
Table 4.8 Sample patterns (Data type of CURR) 90
Table 4.8 Sample patterns (Data type of CURR) (to be continued) 91
Table 4.9 Operator class and data entities 91
Table 4.10 Finding out operands from SAP R/3 (Data type of CURR) 92
Table 4.11(a) “Columns” of queries about currency in SAP BW (we also generate) 92
Table 4.11 (b) “Columns” of queries about currency in SAP BW (we don’t generate) 93參考文獻 Reference
[1]. Aitchison, J., Gilchrist, A., Thesaurus construction: A practical manual., Aslib., 1972.
[2]. B. Alarcon and R. Gutierrez, S. Lucas, “Improving the Context-sensitive Dependency Graph,” Electronic Notes in Theoretical Computer Science, Vol 188(16), pp. 91-103, 2007.
[3]. Bauer, K., KPI identification with fishbone enlightenment., Thomson Media., 2005.
[4]. E. Blomqvist, A. Ohgren, “Constructing an enterprise ontology for an automotive supplier,” Engineering Applications of Artificial Intelligence, Vol 21(3), pp. 386-397, 2008.
[5]. M. Biernacka, O. Danvy, “A syntactic correspondence between context-sensitive calculi and abstract machines,” Theoretical Computer Science, Vol 375(1-3), pp. 76-108, 2007.
[6]. S. L. Bang, J. D. Yang, H. J. Yang, “Hierarchical document categorization with k-NN and concept-based thesauri,” Information Processing and Management, Vol 42(2), pp. 387-406, 2006.
[7]. A. Blanchard, “Understanding and customizing stopword lists for enhanced patent mapping,” World Patent Information, Vol 29(4), pp. 308-316, 2007.
[8]. Curran, T. A., Ladd, A., SAP R/3 Business Blueprint (2nd edition)., Prentice Hall., 2000.
[9]. M. S. Chen, J. Han, P. S. Yu, “Data mining-an overview from database perspective,” IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGIJEERING, Vol 8(6), pp. 866-883, 1996.
[10]. P. P. S. Chen, “The entity-relationship model-toward a unified view of data,” ACM Trans. Database Systems, Vol 1(1), pp. 9-36, 1976.
[11]. S. Chaudhuri, U. Dayal, “An overview of data warehousing and OLAP technology,” ACM SIGMOD Record, Vol 26(1), pp. 65-74, 1997.
[12]. T. S. Chen, S. C. Hsu, “Mining frequent tree-like patterns in large datasets,” Data & Knowledge Engineering, Vol 62(1), pp. 65-83, 2007.
[13]. M. J. Darlington, S. J. Culley, “Investigating ontology development for engineering design support,” Advanced Engineering Informatics, Vol 22(1), pp. 112-134, 2008.
[14]. Date, C. J., An introduction to database systems., Addison-Wesley., 1983.
[15]. Eggar, N. Fiechter, J. M. R., Rohlf, J., SAP BW Data Modeling., SAP Press., 2005.
[16]. J. O. Everett, D. G. Borow, R. Stolle, R. Crouch, V. D. Paiva, C. Condoravdi, M. V. D. Berg, L. Polanyi, “Making ontologies work for resolving redundancies across documents,” Communications of the ACM, Vol 45(2), pp. 55-60, 2002.
[17]. M. Genero, G. Poels, M. Piattini, “Defining and validating metrics for assessing the understandability of entity-relationship diagrams,” Data & Knowledge Engineering, Vol 64(3), pp. 534-557, 2008.
[18]. M. A. Hafer, S. F. Weiss, “Word Segmentation by Letter Successor Varieties,” Information Storage and Retrieval, Vol 10(11-12), pp. 371-385, 1974.
[19]. M. Halper, J. Geller, Y. Perl, “An OODB Part-Whole model: Semantics, notation and implementation,” Data & Knowledge Engineering, Vol 27(1), pp. 59-95, 1998.
[20]. B. Hui, E. Yu, “Extracting conceptual relationships from specialized documents,” Data & Knowledge Engineering, Vol 54(1), pp. 29-55, 2005.
[21]. C. C. Huang, T. L. Tseng, M. Z. Li, R. R. Gung, “Models of multi-dimensional analysis for qualitative data and its application,” European Journal of Operational Research, Vol 174(2), pp. 983-1008, 2006.
[22]. C. W. Holsapple, K. D. Joshi, “Knowledge manipulation activities: results of a Delphi study,” Information & Management, Vol 39(6), pp. 477-490, 2002.
[23]. I. Ioannidis, A. Grama, “Level compressed DAGs for lookup tables,” Computer Networks, Vol 49(2), pp. 147-160, 2005.
[24]. O. H. Ibarra, G. Paun, “Characterizations of context-sensitive languages and other language classes in terms of symport/antiport P systems,” Theoretical Computer Science, Vol 358(1), pp. 88-103, 2006.
[25]. L. G. Jimenez, “REERM: Reenhancing the entity-relationship model,” Data & Knowledge Engineering, Vol 58(3), pp. 410-435, 2006.
[26]. M. E. Johnson, T. Davis, “Improving supply chain performance by using order fulfillment metrics,” National Productivity Review, Vol 17(3), pp. 3-16, 1998.
[27]. J. Kohler, S. Philippi, M. Specht, A. Ruegg, “Ontology based text indexing and querying for the semantic web,” Knowledge-Based Systems, Vol 19(8), pp. 744-754, 2006.
[28]. Kimball, R., The data warehouse lifecycle toolkit., Wiley., 1998.
[29]. F. R. Lin, M. J. Shaw, “Reengineering the Order Fulfillment Process in Supply Chain Networks,” The International Journal of Flexible Manufacturing Systems, Vol 10(3), pp.197–229, 1998.
[30]. R. Lehtokangas, E. Airio, K. Jarvelin, “Transitive dictionary translation challenges direct dictionary translation in CLIR,” Information Processing and Management, Vol 40(6), pp. 973–988, 2004.
[31]. R. M. Losee, “Decisions in thesaurus construction and use,” Information Processing and Management, Vol 43(4), pp. 958-968, 2007.
[32]. Y. Li, S. M. Chung, J. D. Holt, “Text document clustering based on frequent word meaning sequences,” Data & Knowledge Engineering, Vol 64(1), pp. 381-404, 2008.
[33]. D. Mladenic, M. Grobelnik, “Feature selection on hierarchy of web documents,” Decision Support Systems, Vol 35(1), pp. 45– 87, 2003.
[34]. E. Malinowski, and E. Zimanyi, “Hierarchies in a multidimensional model: from conceptual modeling to logical representation,” Data & Knowledge Engineering, Vol 59(2), pp. 348-377, 2006.
[35]. E. F. Medina, J. Trujillo, R. Villarroel, M. Piattini, “Access control and audit model for the multidimensional modeling of data warehouses,” Decision Support Systems, Vol 42(3), pp. 1270-1289, 2006.
[36]. Moss, L. T., Atre, S., Business Intelligence Roadmap., Addison-Wesley., 2003.
[37]. Navathe, S. B., Elmasri, R., Fundamentals of database systems., Benjamin/Cummings., 1989.
[38]. Oracle., Order Fulfillment User’s Guide., 2002.
[39]. A. Pan, J. Raposo, M. Alvarez, V. Carneiro, F. Bellas, “Automatically maintaining navigation sequences for querying semi-structured web sources,” Data & Knowledge Engineering, Vol 63(3), pp. 795-810, 2007.
[40]. C. D. Paice, “Method for evaluation of stemming algorithm based on error counting,” Journal of the American Society for Information Science and Technology, Vol 47(8), pp. 632-649, 1996.
[41]. S. Patig, “Evolution of entity-relationship modeling,” Data & Knowledge Engineering, Vol 56(2), pp. 122-138, 2006.
[42]. SAP Help Portal: http://help.sap.com
[43]. T. B. Pederson, C. S. Jensen, C. E. Dyreson, “A foundation for capturing and querying complex multidimensional data,” Information Systems, Vol 26(5), pp. 383-423, 2001.
[44]. B. D. Sramek, J. T. Mentzer, T. P. Stank, “Creating consumer durable retailer customer loyalty through order fulfillment service operations,” Journal of Operations Management, 2007.
[45]. D. Sanchez, A. Moreno, “Learning non-taxonomic relationships from web documents for domain ontology construction,” Data & Knowledge Engineering, Vol 64(3), pp. 600-623, 2008.
[46]. K. D. Schewe, “Consistency enforcement in Entity-Relationship and object-oriented models,” Data & Knowledge Engineering, Vol 28(1), pp. 121-140, 1998.
[47]. M. Tavana, P. Joglekar, M. A. Redmond, “An automated entity-relationship clustering algorithm for conceptual database design,” Information Systems, Vol 32(5), pp. 773-792, 2007.
[48]. Teorey, T. J. Database Modeling & Design ( third edition)., Morgan Kaufmann Publishers., 1990.
[49]. B. Tsaban, “Decompositions of graphs of functions and fast iterations of lookup tables,” Discrete Applied Mathematics, Vol 155(3), pp. 386-393, 2007.
[50]. L. Vanderwende, H. Suzuki, C. Brockett, A. Nenkova, “Beyond SumBasic: Task-focused summarization with sentence simplification and lexical expansion,” Information Processing and Management, Vol 43(6), pp. 1606-1618, 2007.
[51]. O. Vechtomova, M. Karamuftuoglu, “Query expansion with terms selected using lexical cohesion analysis of documents,” Information Processing and Management, Vol 43(4), pp. 849–865, 2007.
[52]. S. S. Weng, H. J. Tasi, C. H. Hsu, “Ontology construction for information classification,” Expert Systems with Applications, Vol 31(1), pp. 1-12, 2006.
[53]. Wu, “Discovering supplier performance criteria from ERP transaction data with consideration of query dimension,” Institute of Industrial Management of National Central University, 2006.
[54]. Y. C. Wang, J. Vandendorpe, M. Evans, “Relational thesauri in information retrieval,” Journal of the American Society for Information Science, Vol 36(1), pp. 15-27, 1985.
[55]. C. C. Yang, C. P. Wei, K. W. Li, “Cross-lingual thesaurus for multilingual knowledge management,” Decision Support Systems, Vol 45(3), pp. 596-605, 2008.
[56]. Yedidyah L., Moshe J. A., Aaron M. T., Data Structures Using C and C++, 2nd edition., Prentice Hall, 1996.
[57]. A. Yang, M. Schulter, B. Bayer, J. Kruger, E. Haberstroh, W. Marquardt, “A concise conceptual model for material data and its applications in process engineering,” Computers and Chemical Engineering, Vol 27(4), pp. 595-609, 2003.
[58]. D. Yeh, Y. Li, W. Chu, “Extracting entity-relationship diagram from a table-based legacy database,” The Journal of Systems and Software, Vol 81(5), pp. 764-771, 2008.
[59]. A. F. Zazo, C. G. Figuerola, J. L. A. Berrocal, E. Rodriguez, “Reformulation of queries using similarity thesauri,” Information Processing and Management, Vol 41(5), pp. 1163-1173, 2005.
[60]. J. Zubcoff, J. Trujullo, “A UML 2.0 profile to design Association Rule mining models in the multidimensional conceptual modeling of data warehouses,” Data & Knowledge Engineering, Vol 63(1), pp. 44-62, 2007.指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2008-7-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare