博碩士論文 964206016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.136.26.156
姓名 許惠晴(Hui-Ching Hsu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 考量報廢機率之消耗性部品存貨之最佳補貨策略
(Determining Optimal Order Quantity per Procurement Cycle with a Given Length for a Consumption Part subject to Obsolescence Phenomenon)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技及市場的快速變遷,存貨之報廢問題儼然成為一重要問題,為了順應當今生命週期率退、工程變更快速之環境,已有許多學者針對報廢性存貨問題提出相關之研究。而本研究以個案公司之消耗性零件-socket pin為例,提出考量報廢機率求解最佳補貨策略之演算法。其報廢機率受IC之phase out及socket pin之工程變更兩個報廢因子影響,本研究假設以上報廢因子為兩獨立受時間影響之Weibull分配,進一步結合以上因子,進一步,以nonhomogeneous Poisson process之公式求得一時間區間之報廢機率。本研究之訂購策略演算法必須考量固定的需求、相關之成本及收益,並求其最佳訂購量使其利潤最大。最後再針對此報廢率、利潤函數之最佳訂購量及最大利潤進行數值分析與敏感度分析。
摘要(英) Obsolescent inventory is a critical concern in some industries, especially in the environment where the rapid change of technology and market. In spite of the significance of the increasing speed of technological change, there are now few prescriptive studies of the control of obsolescent inventory. The aim of this study is develop a joint rate function of socket pin obsolescence and propose a model to determine the order quantity at any time point to maximize the total profit per procurement cycle with a given length. Consider the case in this research, the obsolescent probability of consumption part-socket pin is effect by two conditions. One is phase out of IC, the other is engineering change of socket pin. We assume the two conditions follow Weibull distribution. Then, joint above two independent distribution to be obsolescent hazard rate. Use nonhomogeneous Poisson process formulation to obtain the interval probability of obsolescence. Furthermore, propose a decision algorithm that solves optimally the procurement policy problem taking into obsolescence problem. The ordering strategy should take into the constant expected demand during the life cycle, relevant costs and revenue. to maximize the profit. Final, we do sensitivity analysis and numerical analysis with the particular parameters finally.
關鍵字(中) ★ 報廢性存貨問題
★ socket pin
★ Weibull分配
★ nonhomogeneous Poission process
★ 最佳訂購量
關鍵字(英) ★ obsolescent inventory problem
★  socket pin
★  Weibu
論文目次 中文摘要.................................................................................................................... i
Abstract ..................................................................................................................... ii
Contents ................................................................................................................... iii
Chapter 1 Introduction and Background ................................................................. 1
1.1 Research background and motivation ........................................................... 1
1.2 Problem description ..................................................................................... 3
1.3 Research objective ....................................................................................... 4
1.4 Research methodology and framework ......................................................... 4
1.4.1 Research methodology....................................................................... 4
1.4.2 Research framework .......................................................................... 5
Chapter 2 Literature review .................................................................................... 7
2.1 Approach to the obsolescent inventory problem ........................................... 7
2.2 Obsolescent risk probability ......................................................................... 8
2.3 Reliability and Weibull Distribution ............................................................. 9
2.4 Nonhomogeneous Poisson Process ............................................................. 12
Chapter 3 The Model ............................................................................................ 15
3.1 Scenario setting .......................................................................................... 15
3.2 Model assumptions and notation ................................................................ 16
3.3 The obsolescent probability function of socket pin ..................................... 19
3.4 Mathematical formulation .......................................................................... 26
Chapter 4 Analysis ............................................................................................... 31
4.1 Sensitivity Analysis .................................................................................... 31
4.1.1 Sensitivity Analysis of hazard rate ................................................... 31
4.1.2 Sensitivity Analysis of
and
.................................................. 33
4.2 Numerical examples ................................................................................... 37
4.3 Numerical study ......................................................................................... 38
4.3.1 Numerical study of hazard rate ........................................................ 38
4.3.2 Numerical study of
and
....................................................... 43
Chapter 5 Summary and future research ............................................................... 51
5.1 Summary ................................................................................................... 51
5.2 Future research ........................................................................................... 52
Reference ................................................................................................................ 53
參考文獻 Arcelus FJ, Pakkala TPM, and Srinivasan G. A myopic policy for the gradual obsolescence problem with price-dependent demand. Computers & Operations Research 2002; 29:1115-1127.
Barlow RE, Proschan F. Mathematical Theory of Reliability. New York: John Wiley & Sons 1965.
Block HW, Borges WS, Savits TH. Age-dependent minimal repair. Journal of Applied Probability 1985; 22: 370-385.
Brown GW, Lu JY, Wolfson RJ. Dynamic modeling of inventories subject to obsolescence. Management Science 1964; 11: 51-63.
Cobbaert K, Van D. Inventory models for fast moving spare parts subject to ‘‘sudden death’’ obsolescence. International Journal of Production Economic 1996; 44: 239-248.
David I, Mehrez A. An inventory model with exogenous failures. Operations Research 1995; 43: 902-903.
David I, Greenshtein E, Mehrez A. A dynamic-programming approach to continuous review obsolescent inventory problems. Naval Research Logistics 1997; 44: 757-774.
Gavrilov LA, Gavrilova NS. The reliability theory of aging and longevity. Journal of Theoretical Biology 2001b; 213: 527-545.
Groenevelt H, Seidman A, Pintelon L. Production batching with machine breakdowns and safety stocks. Operations Research 1993;40: 959-971.
Hadley G, Whitin TM. A family of dynamic inventory models. Management Science 1962; 8: 458-469.
Joglekar P, Lee P. An exact formulation of inventory costs and optimal lot size in face of sudden obsolescence. Operations Research Letters 1993; 14: 283-290.
Katok E, Lathrop A, Tarantino W, Xu SH. Jeppesen uses a dynamic programming-based DSS to manage inventory. Interfaces 2001; 31: 54-65.
Kennedy WJ, Patterson JW, Fredendall LD. An overview of recent literature on spare parts inventories. International Journal of Production Economics 2002; 76(2): 201-215.
Kuo L, Yang TY. Bayesian computation for nonhomogeneous Poisson process in software reliability. Journal of the American Statistical Association 1996; 91:763–773.
Masters JM. A note on the effect of sudden obsolescence on the optimal lot size. Decision Sciences 1991; 22:1180-1186.
Meeker WQ, Escobar LA. Statistical Methods for Reliability Data. John Wiley and Sons, New York, NY 1998.
Nahmias S. On ordering perishable in inventory when both demand and lifetime are random. Management Science 1977; 24(1):82-90.
Rosenfeld, Donald B. Disposal of excess inventory, Operations Research 1989; 37(3):404-409.
Rosin P, Rammler E. The laws governing the fineness of powdered coal, Journal of the Institute of Fuel. 1933; 31:29-36.
Ross, S. Introduction to probability models. Academic Press. 2007
Song Y, Lau HC. A periodic review inventory model with application to continuous review obsolescence problem. European Journal of Operational Research 2004; 15:110-120.
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2009-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明