參考文獻 |
1. 王政嵐,「類螞蟻族群演算法於求解含凹形節線成本最小成本轉運問題之研究」,中央大學土木工程研究所碩士論文(2005)。
2. 朱文正,「考量旅行時間可靠度之車輛途程問題 ─ 螞蟻族群演算法之應用」,交通大學交通運輸研究所碩士論文(2002)。
3. 林依潔,「整合模糊理論與螞蟻演算法於含時窗限制之車輛途程問題」,台北科技大學生產系統工程與管理研究所碩士論文(2003)。
4. 胡曉暉,「粒子群優化算法介紹」,http://www.swarmintelligence.org/papers/cPSOTutorial.pdf,2002年4月。
5. 徐育良,「以粒子群最佳化為基礎之電腦遊戲角色設計之研究」,東海大學資訊工程與科學研究所碩士論文(2002)。
6. 陳建榮,「含凹形節線成本最小成本網路流動問題之全域搜尋演算法研究」,中央大學土木工程研究所碩士論文(2002)。
7. 張榮芳,「電力用戶負載歸類及整合」,國立中山大學電機工程研究所博士論文(2001)。
8. 曾俊傑,「一個智慧型指紋辨識系統的設計方法論」,義守大學電機工程研究所碩士論文(2000)。
9. 葉麗雯,「供應商產能有限及價格折扣下多產品多供應商最佳化採購決策」,元智大學工業工程與管理研究所碩士論文(2002)。
10. 葉思緯,「應用粒子群最佳化演算法於多目標存貨分類之研究」,元智大學工業工程與管理研究所碩士論文(2003)。
11. 韓復華、林修竹,「TA與GDA巨集啟發式法在VRPTW問題上之應用」,中華民國第四屆運輸網路研討會,第83-92頁(1999)。
12. 韓復華、楊智凱,「門檻接受法在TSP問題上之應用」,運輸計劃季刊,第二十五卷,第二期,第163-188頁(1996)。
13. 韓復華、陳國清、卓裕仁,「成本擾動法在TSP問題之應用」,中華民國第二屆運輸網路研討會論文集,第283-292頁(1997)。
14. 韓復華、楊智凱、卓裕仁,「應用門檻接受法求解車輛路線問題之研究」,運輸計畫季刊,第二十六卷,第二期,第253-280頁(1997)。
15. 顏上堯、周容昌、李其灃,「交通建設計畫評選模式及其解法之研究─以中小型交通建設計畫的評選為例」,運輸計畫季刊,第三十一卷,第一期(2002)。
16. 顏上堯、陳建榮、湯慶輝,「含凹形節線成本最小成本轉運問題鄰近搜尋法之研究」,運輸計劃季刊,第三十三卷,第二期,第277-306頁(2004)。
17. Abuali, F. N., Wainwright, R. L., and Schoenefeld, D. A., “Determinant Factorization: ANew Encoding Scheme for Spanning Trees Applied to the Probabilistic Minimum Spanning Tree Problem,” Proceedings of The Sixth International Conference on GeneticAlgorithms, pp. 470-477 (1995).
18. Ahuja, R. K., Maganti, T. L., and Orlin, J. B., Network Flows, Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs (1993).
19. Alfa, A. S., Heragu, S. S., and Chen, M. “A 3-opt Based Simulated Annealing Algorithm for Vehicle Routing Problem,” Computers and Industrial Engineering, Vol. 21, pp. 635-639 (1991).
20. Amiri, A., and Pirkul, H., “New Formulation and Relaxation to Solve A Concave Cost Network Flow Problem,” Journal of the Operational Research Society, Vol. 48, pp. 278-287 (1997).
21. Balakrishnan, A., and Graves S. C., “A Composite Algorithm for a Concave-Cost Network Flow Problem,” Networks, Vol. 19, pp. 175-202 (1989).
22. Blumenfeld, D. E., Burns, L. D., Diltz, J. D., and Daganzo, C. F., “Analyzing Trade-offs Between Transportation, Inventory, and Production Costs on Freight Network,” Transportation Research, Vol. 19B, pp. 361-380 (1985).
23. Booker, L. B., “Improving Search in Genetic Algorithms,” Genetic Algorithms and Simulated Annealing (L. Davis, editor), Pitman, London, pp. 61-73 (1987).
24. Charon, I., and Hurdy, O., “The Noising Method: A New Method for Combinatorial Optimization,” Operations Research Letters, Vol. 14, pp. 133-137 (1993).
25. Costa, D., and Hertz, A., “Ants Can Color Graphs,” Journal of the Computer Science (JORBEL), Vol.34, pp 39-53 (1994).
26. Davis, L., “Genetic Algorithm and Simulated Annealing,” Morgan Kaufman Publishers, Los Altos, CA (1987).
27. Davis, L., “Adapting Operator Probabilities in Genetic Algorithms,” Proceedings of the Third International Conference on Genetic Algorithms, pp. 61-69 (1989).
28. Dorigo, M., and Gambardella, L. M., “A Study of Some Properties of Ant-Q,” Proceedings of PPSN IV-Fourth International Conference on Parallel Problem Solving From Nature, September 22-27, 1996, Berlin, Germany, Berlin: Springer-Verlag, 656-665. (1996).
29. Dorigo, M., and Gambardella, L. M., “Ant Colonies for the Traveling Salesman Problem,” (1996).
30. Dorigo, M., and Gambardella, L. M., “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, 1(1): pp. 53-66. (1997a).
31. Dorigo, M., and Gambardella, L. M., “Ant Colonies for the Traveling Salesman Problem,” BioSystems, 43: pp. 73-81. (1997b).
32. Dorigo, M., Maniezzo, V., and Colorni, A., “The Ant System: An Autocatalytic Optimizing Process,” Technical Report No. 91-016 Revised, Politecnico di Milano, Italy (1991).
33. Dorigo, M., Maniezzo, V., and Colorni, A., “The Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1): pp. 29-41 (1996).
34. Dueck, G., “New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel,” Journal of Computational Physics, Vol. 104, pp. 86-92 (1993).
35. Dueck, G., and Scheuer, T., “Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing,” Journal of Computational Physics, Vol. 90, pp.161-175 (1990).
36. Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science pp. 39-43. IEEE service center, Piscataway, NJ, Nagoya, Japan (1995).
37. Eberhart, R. C. and Kennedy, J. , “Particle Swarm Optimization,” In proceedings of IEEE International Conference on Neural Networks, Vol. IV, pp.1942-1948 (1995).
38. Eberhart, R. C. and Shi, Y. Comparison between genetic algorithms and particle swarm optimization. Evolutionary programming vii: proc. 7th ann. conf. on evolutionary conf., Springer-Verlag, Berlin, San Diego, CA(1998).
39. Eberhart, R. C. and Shi, Y. Particle swarm optimization: developments, applications and resources. Proc. congress on evolutionary computation 2001 IEEE service center, Piscataway, NJ., Seoul, Korea. (2001).
40. Gallo, G., Sandi C., and Sodini, C., “An Algorithm for the Min Concave Cost Flow Problem,” European Journal of Operation Research, Vol. 4, pp. 248-255 (1980).
41. Gallo, G., and Sandi, C., “Adjacent Extreme Flows and Application to Min Concave Cost Flow Problems,” Networks, Vol. 9, pp. 95-121 (1979).
42. Gambardella, L.M., and Dorigo, M., “Solving Symmetric and Asymmetric TSPs by Ant Colonies,” Proceedings of IEEE International Conference on Evolutionary Computation, IEEE-EC 96, May 20-22, 1996, Nagoya, Japan, IEEE Press, pp. 622-627 (1996).
43. Glover, F., and Laguna, M., “Tabu search, Kluwer Academic Publishers,” Massachusetts (1997).
44. Glover, F., “Tabu Search, Part I,” ORSA Journal on Computing Vol. 1, No. 3, pp.190-206 (1989).
45. Glover, F., “Tabu Search- Part II,” ORSA Journal on Computing, Vol. 2, No. 1, pp. 4-32 (1990).
46. Gen, M., and Cheng, R., “Genetic Algorithms and Engineering Design,” Wiley Interscience Publication, MA (1997).
47. Guisewite, G. M., and Pardalos, P. M., “A Polynomial Time Solvable Concave Network Flow Problems,” Networks, Vol. 23, pp. 143-147 (1993).
48. Gu, J., and Huang, X., “Efficient Local Search with Search Space Smoothing: A Case Study of the Traveling Salesman Problem (TSP),” IEEE Transaction on Systems, Man and Cybernetics, Vol. 24, pp. 728-739 (1994).
49. Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley, Reading MA (1989).
50. Golden, B. L., and Skiscim, C. C., “Using Stimulated Annealing to Solve Routing and Location Problems,” Naval Research Logistic Quarterly, Vol. 33, pp. 261-279 (1986).
51. Hall, R. W., “Direct Versus Terminal Freight Routing on Network with Concave Costs,” GMR-4517, Transportation Research Dept., GM Research Laboratories (1983).
52. Jordan, W. C., “Scale Economies on Multi-Commodity Networks,” GMR-5579, Operating Systems Research Dept., GM Research Laboratories (1986).
53. Kennedy, J. and Eberhart, R. C. , “A Discrete Binary Version of the Particle Swarm Optimization,” In proceedings of IEEE International Conference on Neural Networks, Vol. V, pp.4104-4108 (1997).
54. Kennedy, J., Eberhart, R.C. and Shi, Y., “Swarm Intelligence,” Morgan Kaufmann division of Academin Press (2001).
55. Kennedy, J. and Spears, W., “Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,” In IEEE World Congress on Computational Intelligence, pp. 74–77 (1998).
56. Kershenbaum, A., “When Genetic Algorithms Work Best,” INFORMS Journal of Computing, Vol. 9, No. 3, pp.253-254 (1997).
57. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M.P., “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671-680 (1983).
58. Kuhn, H. W., and Baumol, W. J., “An Approximate Algorithm for the Fixed-Charge Transportation Problem,” Naval Res. Logistics Quarterly, Vol. 9, pp. 1-16 (1962).
59. Kuntz, P. and Snyers, D., “Emergant Colonization and Graph Partitioning,” Proceedings of the 3th International Conference on Simulation of Adaptive Behavior: From Animals to Animate, 3, The MIT Press, Cambridge, MA (1997).
60. Larsson, T., Migdalas, A., and Ronnqvist, M., “A Lagrangian Heuristic for the Capacitated Concave Minimum Cost Network Flow Problem,” European Journal of Operational Research, Vol. 78, pp. 116-129 (1994).
61. Nourie, F. J., and Guder, F., “A Restricted-Entry Method for a Transportation Problem with Piecewise-Linear Concave Cost,” Computer & Operations Research, Vol. 21, pp. 723-733 (1994).
62. Osman, I. H., and Kelly, J. P., “Meta-Heuristics: An overview,” Meta-Heuristics: Theory & Applications, Kluwer Academic Publishers, Boston, London, Dordrecht, pp. 1-21 (1996).
63. Palmer, C. C., and Kershenbaum, A., “Representing Trees in Genetic Algorithms,” Proceedings of the First IEEE Conference on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, Vol. 1, pp. 379-384 (1994).
64. Rech, P., and Barton, L. G., “A Non-Convex Transportation Algorithm,” Applications of Mathematical Programming Techniques, E. M. Beale, ed. (1970).
65. Reeves, C. R., “Improving the Efficiency of Tabu Search for Machine Sequencing Problems,” Journal of the Operation Research Society, Vol. 44, No. 4, pp. 375-382 (1993).
66. Shyu, S. J., Yin, P. Y.and Lin, B. M. T., “An Ant Colony Optimization Algorithm for the Minimum Weight Vertex Cover Problem,” Manuscript Submitted for Publication. (NSC-90-2213-E-130-001) (2002).
67. Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation pp. 69-73. IEEE Press, Piscataway, NJ (1998a).
68. Shi, Y. and Eberhart, R. C. Parameter selection in particle swarm optimization. Evolutionary Programming VII: Proc. EP 98 pp. 591-600. Springer-Verlag, New York (1998b).
69. Shi, Y., “Particle Swarm Optimization,” IEEE Connections , Vol 2, pp.8-13 (2004).
70. Suwan, R., and Sawased, T., “Link Capacity Assignment in Packet- Switched Networks: The Case of Piecewise Linear Concave Cost Function,” IEICE Trans. Commun., Vol. E82-B, No. 10 (1999).
71. Taguhi, T., Ida. K., and Gen, M., “A Genetic Algorithm for Optimal Flow Assignment in Computer Network,” Computers ind. Engng, Vol. 35, No3-4, pp. 535-538 (1998).
72. Thach, P. T., “A Decomposition Method Using A Pricing Mechanism for Min Concave Cost Flow Problems With a Hierarchical Structure,” Mathematical Programming, Vol. 53, pp. 339-359 (1992).
73. Yaged, B., “Minimum Cost Routing for Static Network Models,” Networks, Vol. 1, pp 139-172 (1971).
74. Yan, S., Juang, D. H., Chen, C. R., and Lai, W. S., “Global and Local Search Algorithms for Concave Cost Transshipment Problems,” Journal of Global Optimization, Vol. 33, No. 1, pp. 123 – 156 (2005).
75. Yan, S., and Luo, S. C., “A Tabu Search-Based Algorithm for Concave Cost Transportation Network Problems,” Journal of the Chinese Institute of Engineers, Vol. 21, pp. 327-335 (1998).
76. Yan, S., and Luo, S. C., “Probabilistic Local Search Algorithms for Concave Cost Transportation Network Problems,” European Journal of Operational Research, Vol.117, pp. 511-521 (1999).
77. Yan, S., and Young, H. F., “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight Scheduling,” Transportation Research, Vol. 30A, pp. 379-398 (1996).
78. Zangwill, W. I., “Minimum Concave Cost Flows in Certain Networks,” Management Science, Vol. 14, pp. 429-450 (1968) |