博碩士論文 90441014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.59.36.36
姓名 劉永欽(Yong-Chin Liu)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 Beta值變動因素之探討與資金成本之估計:以航空公司為例
(The Investigation of Factors of Change in Beta Risks and the Estimation of the Cost of Capital: A Study of Airlines)
相關論文
★ 股權分置對中國上市公司現金股利發放之影響★ 所有權結構與政治連結對股利政策之影響—以中國國有企業為例
★ 董監事最低持股成數規定之研究★ 合格境外機構投資人制度對投資/現金流量敏感度之影響
★ 從股票價格區間探討股票買回活動之資訊內涵★ 跨境上市對於企業負債比率的影響:以中國跨港上市公司為例
★ 家族集團之盈餘管理行為★ 股權結構與投資效率:中國上市公司之多重大股東實證研究
★ 股權分置改革對中國上市公司現金持有的影響★ 手機按鍵生命週期探討企業轉型之路
★ 制度改革對於關係人交易的影響★ 伊斯蘭教義、公司治理與營運資金管理對公司價值影響之研究—以印尼上市公司為例
★ 股利宣告對股價超常報酬的影響-以台灣集團與非集團上市公司為例★ 公司規模、股價、益本比、淨值市價比與股票超常報酬關係之實證研究
★ 台灣股票上市公司營運資金管理相關議題之實證研究★ 我國財務危機上市公司股權結構之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文提要:
系統風險—beta 值是權益成本估計與股票評價時極重要的資料,尤其是航空公司,因其投資資本資產金額頗大,且其營運對系統風險極敏感。由於了解 beta 變動的因素有助 beta 的估計,本文目的之一即檢視在應用資本資產定價模式 (CAPM) 或三因子模式 (TFM) 時,航空公司 beta 波動情形及其波動之影響因素。
本文以兩家上市航空公司—中華與長榮航空—為樣本,資料取自財務報表與股市,以 t 檢定檢驗 beta 穩定性,及以 Tobit 迴歸分析影響 beta 變動之因素。
研究發現樣本公司 beta 會隨時間而變動,變動之區間大於一,而影響因素有:空難事件、股市多空、景氣循環、營業與財務槓桿、資本結構、流動比率 (以上為正相關) 以及權益報酬率 (負相關)。
另一部分,前述結果隱喻 CAPM 和 TFM 可能不可靠,為正確估計資金成本,本文擴充 Fama 與 French (1999) 所用以估計全體公司資金成本的內部報酬率法 (IRR),用於估計個別公司過去資金成本,即以公司市值為基礎計算 IRR。
Fama 與 French 指出,簡單年報酬之幾何平均可估計未來資金成本,但因後者可能為負且不穩定,本文改以逐年移動的年 IRR 之正值的均數預估資金成本,使成本變動幅度極小且必為正值,符合必要報酬應為正值之前提。結果發現:華航與長榮在2000-2003,平均資金成本分別為4.02%與6.68%;預估未來資金成本分別為3.03%與6.43%。
摘要(英) ABSTRACT
Beta value, an indicator of systematic risk, is critical for estimating the cost of equity and evaluating stock value; particularly for airlines because the amount of their investments in capital assets is large and operations are relatively sensitive to systematic risks. To obtain a better beta estimate, one should identify the factors for betas’ wandering. This research, in Part I, aims to examine the volatility of airline betas in CAPM and three-factor pricing model (TFM), and explore the potential factors affecting betas.
The sample is two airlines—the China Airlines and EVA Airways—where their stocks are listed in the Taiwan Stock Exchange. The empirical data include information in both financial statements and stock market. Research approaches consist of stability test of betas for CAPM and TFM in up/down market conditions and crashes by t test and Tobit regression with the dependent variable being moving airline betas resulted from rolling regression (CAPM and TFM).
In Part I, the results suggest that airline betas are volatile over time, the range almost exceeding 1.00, and that crashes and transitions in stock market trends may also affect betas. Moreover, the business cycle, operating and financial leverage, and capital structure all positively influence the sample airlines’ betas. The effects of ROE on betas are negative, and liquidity might also impact betas. The findings are helpful for estimating or forecasting airline betas.
In Part II, based on the findings in Part I that airline betas are unsteady, the CAPM and TFM tend to be unreliable. To estimate the history cost of capital for individual airlines, this research applies and extends Fama-French (1999) internal rate of return (IRR) technique and estimates IRR on value (rv) (i.e. investors’ required returns and being also the overall cost of capital). The rv equates the initial market value of a firm with the present value of its net cash flows of each period and its terminal market value. The merit of the IRR method is that it has less measurement errors than other approaches such as the CAPM.
Furthermore, Fama and French (1999) proposed that the geometric mean of simple annual returns could be used to estimate the future cost of capital. However, the simple returns are not necessarily positive and may highly fluctuate over time; accordingly, their mean may also be negative, not consistent with the logic that required returns should be positive. Thus, this research, alternatively, adopts the arithmetic mean of positive multi-year moving rv to estimate the future cost of capital.
The results in Part II are that as the estimation period is 2000-2003, the average costs of capital are around 4.02% and 6.68% for the China Airlines and EVA Airways, respectively. For sample airlines, the range of the positive values of the multi-year moving rvs is smaller than the results of other methods such as simple annual returns, CAPM and TFM. The estimation result is that the future costs of capital equal around 3.03% and 6.43% for the China Airlines and EVA Airways, respectively.
關鍵字(中) ★ 資本資產定價模式
★ 貝他(beta)值
★ 內部報酬率
★ 資金成本
★ 三因子定價模式
關鍵字(英) ★ three-factor pricing model
★ capital asset pricing model
★ beta value
★ the cost of capital
★ internal rate of return
論文目次 TABLE OF CONTENTS
Page
ABSTRACT I
ACKNOWLEDGMENTS IV
TABLE OF CONTENTS V
LISTS OF FIGURES VII
LIST OF TABLES VIII
PART I AN EXAMINATION OF THE FACTORS OF CHANGE IN AIRLINE BETAS 1
CHAPTER 1 INTRODUCTION 1
1.1. MOTIVATION 1
1.2. RESEARCH PURPOSE 3
1.3. THESIS STRUCTURE 4
CHAPTER 2 METHODS FOR CALCULATING BETAS 6
2.1. THE CAPITAL ASSET PRICING MODEL 6
2.2. THE THREE-FACTOR PRICING MODEL 7
2.3. THE PROBLEMS OF THE CAPM AND TFM 8
CHAPTER 3 EMPIRICAL METHODS AND APPLICATION 10
3.1. SAMPLE AIRLINES 10
3.2. THE DEFINITIONS OF VARIABLES IN CAPM AND TFM 10
3.3. THE STABILITY TESTS FOR AIRLINE BETAS 13
3.3.1. The t test for betas in models 13
3.3.2. The rolling CAPM and TFM 18
3.4. THE FACTORS CAUSING BETAS TO VARY 20
3.4.1. Description of variables 20
3.4.2. Tobit regression analysis 21
3.4.3. Further discussion of results 24
CHAPTER 4 DISCUSSIONS 27
PART II THE COST OF CAPITAL AND MULTI-PERIOD FINANCIAL PERFORMANCE: A STUDY FOR AIRLINES 29
CHAPTER 5 INTRODUCTION 29
5.1. MOTIVATION 29
5.2. RESEARCH PURPOSE 30
5.3. THESIS STRUCTURE 33
CHAPTER 6 METHODOLOGY—IRR APPROACH 34
6.1. THE COST OF CAPITAL AND PROFITABILITY 34
6.2. ESTIMATING THE FUTURE COST OF CAPITAL 37
CHAPTER 7 RESEARCH DATA AND EMPIRICAL RESULTS 40
7.1. DATA 40
7.2. RESEARCH RESULTS 41
7.2.1. The IRR on cost and on value 41
7.2.2. The Future Cost of Capital 45
CHAPTER 8 DISCUSSIONS 49
PART III CONCLUSIONS 50
REFERENCES 54
LIST OF FIGURES
Page
FIGURE 1 Moving Betas in Rolling CAPM 19
LIST OF TABLES
Page
TABLE 1 Descriptive Statistics of Return Variables: Period 2/4th/93-2/4th/2004 12
TABLE 2 Weekly Local Highest/Lowest Indexes in Bull/Bear Markets
and the Time of Crash for China Airlines Ltd. 14
TABLE 3 The Stability Tests of Betas for CAPM and TFM in Bull/Bear Markets and Crashes by T Test 17
TABLE 4 Descriptive Statistics of the Moving Betas of Sample Airlines 18
TABLE 5 The Estimation Results of Tobit Regression Analysis with the Dependent Variable Being Moving Airline Betas. The Probability Values Are in Parentheses. 23
TABLE 6 The IRRs on Cost and on Value and Their Differences (in %). 44
TABLE 7 Forecast of Annual Cost of Capital (in %). 47
參考文獻 References
Fama, E.F., and K.R. French, 1992. The cross-section of expected stock returns. Journal of Finance 47, 427-465.
Fama, E.F., and K.R. French, 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3-56.
Fama, E.F., and K.R. French, 1995. Size and book-to-market factors in earnings and returns. Journal of Finance 50, 131-155.
Fama, E.F., and K.R. French, 1996. Multifactor explanations of asset anomalies. Journal of Finance 51, 55-84.
Fama, E. F., & French, K. R., 1997. Industry costs of equity. Journal of Financial Economic, 43, 153-193.
Fama, E. F., & French, K. R., 1999. The corporate cost of capital and the return on corporate investment. Journal of Finance 54, 1939-1967.
Hair, J.F., R.E. Anderson, R.L. Tatham, and W.C. Black, 1998. Multivariate Data Analysis. 5th edition, Prentice-Hall Inc. US.
Isakov, D., 1999. Is beta still alive? Conclusive evidence from the Swiss stock market. European Journal of Finance 5, 202-212.
Jegadeesh, N., 1992. Does market risk really explain the size effect?. Journal of Financial and Quantitative 27 (3), 337-351.
Lintner, John, 1965. Security prices, risk and maximal gains from diversification. Journal of Finance 20, 587-615.
Mandelker, G. N., and S. G. Rhee, 1984. The impact of degrees of operating and financial leverage on systematic risk of common stock. Journal of Financial and Quantitative Analysis 19 (1), 45-58.
McNulty, James J., Yeh, Tony D., Schulze, William S., & Lubatkin, Michael H., 2002. What's your real cost of capital?. Harvard Business Review 80, 114-121.
Mear, Ross, and Michael Firth, 1988. Risk perceptions of financial analysts and the use of market and accounting data. Accounting and Business Research 18 (72), 335-340.
Morrell, P.S., 1997. Airline Finance, 1st Edition, Ashgate, Aldershot.
Mossin, J., 1966. Equilibrium in a capital asset market. Econometrica 34, 768-783.
Newey, Whitney and Kenneth West, 1987. A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703-708.
Ross, S.A., Westerfield, R.W., and Jaffe, J., 2001. Corporate Finance, 6th ed., New York: McGraw-Hill, Inc.
Sharpe, W.F., 1964. Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance 19, 425–442.
Stewart, G.B., 1991. The Quest for Value. New York: HarperCollins.
Turner, Sheelah, and Peter Morrell, 2003. An evaluation of airline beta values and their application in calculating the cost of equity capital. Journal of Air Transport Management 9, 201-209.
指導教授 洪榮華(Jung-Hua Hung) 審核日期 2005-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明