參考文獻 |
(1) 王仁正,「人造互層岩石之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1995)。
(2) 田永銘、朱正安、張大猷,「緩衝材料熱傳導係數之量測與預測模式」,2004 岩盤工程研討會論文集,台北,第694-701頁(2004)。
(3) 田永銘、朱正安、張家銘、鐘富誠、陳婕,「熱探針量測法應用於大地材料之適用性」,2006 岩盤工程研討會論文集,台南,第 669-678 頁 (2006)。
(4) 呂紹垣,「以ABAQUS模擬粉體之壓實行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
(5) 林俊宏,「粉體在不同含水量及乾單位重下之熱傳導係數」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
(6) 張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測 與分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)。
(7) 張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,碩 士論文,國立中央大學土木工程研究所,中壢 (2006)。
(8) 愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份 有限公司,台北 (2005)。
(9) 劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,碩士 論文,國立中央大學土木工程研究所,中壢 (2003)。
(10) 簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國
立中央大學土木工程研究所,中壢 (1996)。
(11) 鄔德傳,「緩衝材料熱傳導性質與放射性廢料處置場溫度效 應」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
(12) Abdou, A. A. and Budaiwi, I. M., "Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures," Journal of Building Physics, Vol.29, No. 2, pp. 171-184 (2005).
(13) Abdulagatov, I. M., Emirov, S. N., Abdulagatova, Z. Z., and Askerov, S. Y., "Effect of pressure and temperature on the thermalconductivity of rocks," Journal of Chemical and Engineering Data, Vol. 51, No. 1, pp. 22-33 (2006).
(14) Abu-Hamdeh, N. H., Khdair, A. I., Reeder, R. C., “A comparison of two method used to evaluate thermal conductivity for some soils,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1073-1078 (2001).
(15) ASTM, "ASTM D5334:Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure," Annual Book of ASTM Standards, Vol. 0409, No. (2000).
(16) Batty, W. J., O'Callaghan, P. W., and Probert, S. D., "Assessment of the thermal-probe technique for rapid, accurate measurements of effective thermal conductivities," Applied Energy, Vol. 16, No. 2, pp. 83-113 (1984).
(17) Bouguerra, A., Laurent, J. P., Goual, M. S., and Queneudec, M., "Measurement of the thermal conductivity of solid aggregates using the transient plane source technique," Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904 (1997).
(18) Carslaw, H. S., and Jaeger, J. C., “Conduction of Heat in Solid,” Second Edition, Oxford at the Clarendon Press, pp.261-262 (1959).
(19) Chandrakanthi, M., Mehrotra, A. K., and Hettiaratchi, J. P. A.,"Thermal conductivity of leaf compost used in biofilters: Anexperimental and theoretical investigation," Environmental Pollution, Vol. 136, No. 1, pp. 167-174 (2005).
(20) Cote, J. and Konrad, J. M., "A generalized thermal conductivitymodel for soils and construction materials," Canadian Geotechnical Journal, Vol. 42, No. 2, pp. 443-458 (2005).
(21) Cull, J. P., “Thermal contact resistance in transient conductivity Measurements,” The Institute of Physics, Vol. 11, pp. 323-326 (1978).
(22) David, C., Menendez, B., and Darot, M., "Influence of stress-induced and thermal cracking on physical properties andmicrostructure of La Peyratte granite," International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 4, pp. 433-448 (1999).
(23) Dewynter, V., Rougeault, S., Boussoir, J., Roussel, N., Ferdinand,P., and Wileveau, Y., "Instrumentation of borehole with fiber bragg grating thermal probes: Study of the geothermic behaviour of rocks," Bruges, Belgium, (2005).
(24) Faronki, O. T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol. 11, Trans. Tech. Publication, Germany (1986).
(25) Gori, F., Corasaniti, S., “Theoretical prediction of the soil thermal conductivity at moderately high temperatures,” Journal of Heat Transfer, Vol. 124, pp. 1001-1008 (2002).
(26) Gunn, D. A., Jones, L. D., Raines, M. G., Entwisle, D. C., and Hobbs, P. R. N., "Laboratory measurement and correction of thermal properties for application to the rock mass," Geotechnical and Geological Engineering, Vol. 23, No. 6, pp. 773-791 (2005).
(27) Gustafsson, S. E., “Transient plane source techniques for thermal conductivity and thermal diffivity measurements of solid materials,” Rev. Sci. Instrum., Vol. 62, pp.797-804 (1990).
(28) Gustavsson, J. S., Gustavsson, M., Gustafsson, S. E., "On the Use of the Hot Disk Thermal Constants Analyser for Measuring the Thermal Conductivity of Thin Samples of Electrically Insulating Materials," Proc. 24th Int. Thermal Conductivity Conf., Pittsburgh, USA (1997).
(29) Hartmann, A., Rath, V., and Clauser, C., "Thermal conductivity from core and well log data," International Journal of Rock Mechanics and Mining Sciences, Vol. 42, No. 7-8 SPEC ISS, pp.1042-1055 (2005).
(30) Hashin, Z. and Shtrikman, S, “A Variational Approach to the Theroy of the Effective Magnetic Permeability of Multiphase Materials, ” Journal of Applied Physics, Vol. 33, pp. 1514-1517 (1962).
(31) Hill, R., “A Self-Consistent Mechanics of Composite Materials, ” Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 213-222 (1965).
(32) Huenges, E., Burkhardt, H., Erbas, K., "Thermal Conductivity Profile of the KTB Pilot Corehole, " Scientific Drilling, Vol.1, pp.224-230 (1990).
(33) Khan, M. I., “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Building and Environment, Pergamon, pp.607-614 (2002).
(34) Krishnaiah, S., Singh, D. N., and Jadhav, G. N., "A methodology for determining thermal properties of rocks," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 877-882 (2004).
(35) Lee, T. C., Henyey, T. L., and Damiata, B. N., “A simple method for the absolute measurement of thermal conductivity of drill cuttings,” Institute of Geophysics and Planetary Sciences, Vol. 51, No. 8, pp 1580-1584 (1986).
(36) Luo, M., Wood, J. R., and Cathles, L. M., "Prediction of thermal conductivity in reservoir rocks using fabric theory," Journal of Applied Geophysics, Vol. 32, No. 4, pp. 321-334 (1994).
(37) Maqsood, A., Kamran, K., and Gul, I. H., “Prediction of thermal conductivity of granite rock from porosity and density data at normal temperature and pressure: In situ thermal conductivity measurements,” Journal of Physics D: Applied Physics, Vol. 37, No.24, pp.3396-3401 (2004).
(38) Mclaughlin., R., “A study of the differential scheme for composite materials,” J. Eng Sci., pp.237-244 (1977).
(39) Milun, S., Kilic, T., and Bego, O., "Measurement of soil thermal properties by spherical probe," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 3, pp. 1219-1226 (2005).
(40) Naidu, A. D. and Singh, D. N., "Field probe for measuring thermal resistivity of soils," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 2, pp. 213-216 (2004).
(41) Nusier, O. K. and Abu-Hamdeh, N. H., "Laboratory techniques to evaluate thermal conductivity for some soils," Heat and Mass Transfer/Waerme- und Stoffuebertragung, Vol. 39, No. 2, pp. 119-123 (2003).
(42) Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., “Characterization of rock thermal conductivity by high-resolution optical scanning,” Geothermics, Vol. 28, No. 2, pp. 253-276 (1999).
(43) Singh, D. N., Kuriyan, S. J., and Manthena, K. C., “A generalized relationship between soil electrical and thermal resistivities,” Experimental Thermal and Fluid Science, Elsevier, pp. 175-181 (2000).
(44) Tarnawski, V. R., Gori, F., Wagner, B., Buchan, G. D., “Modelling approaches to predicting thermal conductivity of soils at high temperature,” International Journal of Energy Research, Vol. 24, pp. 403-423 (2000).
(45) Tarnawski, V. R., Leong, W. H., Gori, F., Buchan, G. D., Sundberg, J., “Inter-particle contact heat transfer in soil systems at moderate temperatures,” International Journal of Energy Research, Vol. 26, pp. 1345-1358 (2002).
(46) Tavman, I. H., "Effective thermal conductivity of granular porous materials," International Communications in Heat and Mass Transfer, Vol. 23, No. 2, pp. 169-176 (1996).
(47) Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., “Thermal Conductivity of Nonmetallic Solid, ” Thermophysical Properties of Matter, Vol. 2, IFI/plenum, New York-Washington (1970).
(48) Troschke, B. and Burkhardt, H., "Thermal conductivity models for two-phase systems," Physics and Chemistry of the Earth, Vol. 23, No. 3, pp. 351-355 (1998).
(49) Xie, L.-J., Schmidt, J., Schmidt, C., and Biesinger, F., “2D FEM estimate of tool wear in turning operation,” Institut for Werkzugmaschinen and Betriebstechnik, Universitat Karlsruhe, Germany (2004). |