博碩士論文 943202043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.149.232.87
姓名 郭硯華(Yan-hua Guo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
(The use of alkali-activated electric-arc furnace reductive slag as binding material for concrete)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析
★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究
★ 三維有限元素應用於柔性鋪面之非線性分析★ 放射性廢料處置場緩衝材料之力學性質
★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究★ 路基土壤受反覆載重作用之累積永久變形研究
★ 還原碴取代部份水泥之研究★ 路基土壤反覆載重下之回彈與塑性行為及模式建構
★ 重載交通荷重對路面損壞分析模式之建立★ 鹼活化電弧爐還原碴之水化反應特性
★ 電弧爐氧化碴為混凝土骨材之可行性研究★ 鹼活化還原碴漿體收縮及抑制方法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 還原碴為電弧爐煉鋼爐碴生產過程中的副產品,並且產量龐大,屬於無機事業廢棄物,經適當處理後能發揮類似卜特蘭水泥的膠結功能,取代部份的水泥材料,達到資源化再利用的目的。
本研究利用鹼活化處理技術提升還原碴的活性,所使用之鹼活化劑為矽酸鈉及氫氧化鈉之組合,利用高pH值的特性激發還原碴膠結的能力,達抗壓強度的發展,做為混凝土製品中的膠結材料用。
還原碴的品質受煉鋼製程影響,本文針對不同採樣批次還原碴建立其膠結品質之強度檢測,評估各批還原碴是否適合於直接進行鹼活化之處理;未達標準者則利用添加20 %~30 %爐石之方式強化其活化成效。研究成果得知經鹼活化處理之還原碴,可符合卜特蘭Ι型水泥抗壓強度標準。此外,利用添加脫硫石膏於還原碴試體,可減少鹼活化還原碴試體之乾縮量。同時為掌握還原碴膠結料與細粒料之關係,進一步製作鹼活化還原碴高壓混凝土地磚,實驗得知7天抗壓強度可達國內高壓混凝土地磚之A級磚標準,證實鹼活化還原碴膠結料應用於混凝土製品之成效。
摘要(英) The reductive slag is a byproduct of steel-making industry using electric-arc furnace. In order to replace some cement materials, reductive slag can be processed to make its property similar to the binder of Portland cement. Meanwhile, this achieves the purpose of recycling.
This study used alkali activator to improve the activity of reductive slag so as to replace Portland cement as binder in concrete. By using sodium silicate and sodium hydroxide as alkali-activator, a high-pH environment is generated to excite the binding characteristics of reductive slag, and thus develops compressive strength of the mixes.
The binding quality of reductive slag is influenced by the processes of steel-making. The study has established the procedures in the evaluation of the binding quality of reductive slag. Using this procedure, it is possible to determine if each batch of reductive slag is suitable for alkali activation directly or not. The reductive slag not satisfying the requirement is recommended to be added a 20~30% blast furnace slag (BFS) for improvement in activation effects. Test results show that alkali-activated reductive slag satisfies compressive strength requirement for type I Portland cement. In addition, the addition of desulphurization gypsum to the reductive slag-BFS mixes will reduce the shrinkage of alkali-activated reductive slag.
Alkali-activated reductive slag as binding material is further extended to precast concrete products by applying it to the manufacture of concrete bricks. The compressive strength of mixes prepared using alkali-activated slag and fine aggregates was found to satisfy the domestic standard for Grade A concrete brick.
關鍵字(中) ★ 電弧爐還原碴
★ 鹼活化劑
★ 脫硫石膏
關鍵字(英) ★ alkali-activator
★ electric-arc furnace reductive slag
★ flue gas desulfurization gypsum
論文目次 目錄
目錄 I
圖目錄 IV
表目錄 IX
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 4
2.1電弧爐煉鋼 4
2.1.1電弧爐煉鋼簡介 4
2.1.2電弧爐煉鋼廢爐碴-還原碴之產量及特性 5
2.2卜作嵐反應 9
2.3常見水化產物之種類及特性 10
2.4鹼活化劑處理技術 14
2.4.1鹼活化劑之反應機理 14
2.4.2影響活化效果之因素 17
2.4.3運用鹼活化劑技術之優缺點 22
2.5硬固混凝土之體積變化 28
2.5.1混凝土體積變化之種類 28
2.5.2硬固水泥漿體收縮行為 31
2.5.3水泥漿體之孔隙水及孔隙結構 32
2.6抑制收縮之方法 36
第三章 實驗材料 39
3.1實驗材料 39
3.2實驗設備及儀器 43
3.3實驗流程及方法 49
3.3.1實驗流程 49
3.3.2實驗方法 54
3.3.3配比計算 57
第四章 結果與分析 60
4.1還原碴基本性質分析 61
4.1.1物理性質 61
4.1.2化學性質 66
4.2還原碴品質之基本試驗 70
4.2.1建立鹼活化劑之含鹼當量及鹼模數比 70
4.2.2摻配產業廢石膏對純還原碴活化效果之影響 76
4.3建立還原碴品質標準測試法 81
4.3.1還原碴品質檢驗 81
4.3.2還原碴添加爐石之活化成效 84
4.3.3還原碴添加爐石粉之鹼活化劑濃度評估 90
4.4脫硫石膏對鹼活化還原碴+爐石粉之活化成效影響 96
4.4.1健度及SO3含量檢驗 97
4.4.2脫硫石膏對乾縮之影響 100
4.4.3脫硫石膏對抗壓強度之影響 102
4.5鹼活化還原碴製作混凝土製品 104
4.5.1初步評估鹼活化還原碴之混凝土製品可行性 104
4.5.2水膠比之影響 106
4.5.3細粒料用量之影響 110
4.6微觀分析 116
第五章 結論與建議 121
5.1結論 121
5.2建議 122
參考文獻 123
參考文獻 李宜桃,「鹼活化還原碴漿體之收縮及抑制方法研究」,國立中央大學土木工程研究所碩士學位論文(2003)。
沈永年,「不銹鋼爐碴細度對水泥砂漿工程性質之影響」,工程科技教育學刊,第二卷,第一期,第46-57頁(2005)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)。
曾偉林,「鹼活化爐石粉基質材料製成與基本特性探討」,國立台灣海洋大學河海工程學系碩士學位論文(2001)。
蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
ASTM C1038. (1995). “Standard Test Method for Expansion of Portland Cement Mortar Bars Stored in Water.” ASTM Designation.
ASTM C490.(2000) “Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete.” ASTM Designation.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cement and Concrete Research, 29(10), 1619-1625.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). “Alkali activation of Australian slag cement. ” Cement and Concrete Research, 29(1),113-120.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30(9), 1367-1374.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2003). “Sulfate attack on alialk-activated slag concrete.” Cement and Concrete Research, 32(2), 211-216.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2003). “Resistance of alkali-activated slag concrete to acid attack.” Cement and Concrete Research, 33(10), 1607-1611.
Collins, F., and Sanjayan, J. G. (1999). “Workability and mechanical properties alkali-activated slag concrete.” Cement and Concrete Research, 29(3), 455-458.
Collins, F., and Sanjayan, J. G. (1999). “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cement and Concrete Research, 29(3), 459-462.
Collins, F., and Sanjayan, J. G. (1999). “Strength and shrinkage properties of alkali-acrivated slag concrete containing porous coarse aggregate. ” Cement and Concrete Research, 29(9), 607-610.
Collins, F., and Sanjayan, J. G. (2000). “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete.” Cement and Concrete Research, 30(9), 1401-1406.
Chang, J. J. (2000). “A study on the setting characteristics of sodium silicate-activated slag pastes.” Cement and Concrete Research, 33(7), 1005-1011.
Gong, C., and Yang, N. (2000). “Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material.” Cement and Concrete Research, 30(7), 1013-1016.
Huanhai, Z., Xuequan, W., and Zhongzi, X. (1993). “Kinetic Study on Hydration of Alkali-Activated Slag.” Cement and Concrete Research, 23, 1253-1258.
IUPAC. (1972). Manual of symbols and terminology, appendix 2, part 1, Colloid and Surface Chemistry, J Pure Chem31,578.
Katz, A. (1998). “Microscopic study of alkali-activated fly ash.” Cement and Concrete Research, 28(2), 197-208.
Krizan, D., and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cement and Concrete Research, 32(8), 1181-1188.
Mehta, P. K. (1986). Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Palacios, M., Puertas, F. (2005). “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cement and Concrete Research, 35(7), 358-1367.
Palacios, M., Puertas, F. (2007). “Effect of shrinkage-reducing admixtures on the of alkali-activated slag mortars and pastes.” Cement and Concrete Research, 37(5), 691-702.
Shi, C., and Li, Y. (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research, 19(4), 527-533.
Shi, C., and Day, R. L. (1995). “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25(6), 1333-1346.
Shi, C., and Day, R. L. (1996). “Some factors affecting early hydration of alkali slag cement.” Cement and Concrete Research, 26(3), 439- 447.
Shi, C., (1996). “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars.” Cement and Concrete Research, 26(12), 1789-1799.
Shi, C., and Xie, P. (1998). “Interface between cement paste and quartz sand in alkali-activated slag mortars.” Cement and Concrete Research, 28(6), 887-896.
Song, S., and Jennings, H. M. (1999). “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29(2), 159-170.
Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994). “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research, 24(6), 1033-1043.
Young, J. F., Mindess, S. and Darwin, D. (2002). Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Huang Wei-Hsing) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明