博碩士論文 91428002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:13.58.137.54
姓名 洪怡真(Yi-Chen Hung)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 亞式利率交換契約之評價:利用LIBOR Market Models
(Pricing Asian-Style Interest Rate SwapsUsing LIBOR Market Models)
相關論文
★ 最適指數複製法之自動化建置:以ETF50為例★ 台灣公債市場與台幣利率交換交易市場動態關聯性之研究
★ 企業貸款債權證券化--信用增強探討★ 停損點反向操作指標在台灣期貨市場實證
★ 投資型保單評價-富邦金吉利保本投資連結型遞延年金保險乙型(VANB5)★ 停損點反向操作指標在台灣債券市場實證
★ 匯率風險值衡量之實證研究-以新台幣、日圓、英鎊、歐元匯率為例★ 探討央行升息國內十年期指標公債未同步上升之原因
★ 信用風險模型評估—Merton模型之應用★ 資產管理公司購買不動產擔保不良債權評價之研究
★ 股票除息對期貨與現貨報酬之影響★ 主權基金的角色定位與未來影響力之研究
★ 我國公債期貨之研究分析★ 用事件研究法探討希臘主權債信危機-以美國及德國公債為例
★ 企業避險及財務操作之實例探討★ 台灣期貨市場之量價交易策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
本文的目的是利用LIBOR Market Model來評價亞式利率交換契約,在亞式利率交換契約中,浮動利率支付的部分,主要運用LIBOR Market Model並在兩個連續的利率重設日,求得平均的浮動利率,我們算出平均的浮動利率,並比較標準的利率交換契約及兩種形式的亞式利率交換契約在不同參數變動下的變化情形,且發現利率期間結構的斜率及利率重設期間的長度,是影響標準的利率交換契約及亞式利率交換契約差異的很重要的因素。
摘要(英) Abstract
This study uses the LIBOR Market Model to price Asian-style interest rate swaps. In an Asian-style interest rate swap contract, the floating payment is determined by the average LIBOR rate between two consecutive settlement dates under the LIBOR Market Model. We deal with the average LIBOR rates and compare two types of Asian-style interest rate swaps and standard interest rate swaps with different sets of interest rate parameters. We find out that the shape of the initial term structure and the reset periods of the interest rate swap are important factors to make the swap rates of the Asian-style and standard interest rate swaps different.
關鍵字(中) ★ 利率模型
★ 亞式
★ 交換契約
關鍵字(英) ★ Asian style
★ Swap
★ LIBOR Market Model
論文目次 Contents
1. Introduction………………………………………………………………1
2. Literature Review………………………………………………………2
3. The Model…………………………………………………………………5
3.1 The LIBOR Market Model………………………………………………5
3.1.1 The LIBOR Dynamic Process…………………………………………6
3.1.2 The Terminal Measure……… … ……………… …………………7
3.1.3 LIBOR Rate Resetting Under Non-Standard Expiry-Maturity…8
3.2 The Standard Interest Rate Swap……………………………………9
3.3 Asian-Style Interest Rate Swap………………………… …………10
3.3.1 Type 1-Asian-Style Interest Rate Swap…………………………10
3.3.2 Type 2-Asian-Style Interest Rate Swap…………………………12
4. Numerical Results………..……………………………………………13
5. Conclusions and Future Research……………………………………15
Reference…………………………………………………………….………17
Appendix……………………………………………………………19
List of Figures
Figure 1…………………………………………………………………20
Figure 2…………………………………………………………………20
Figure 3…………………………………………………………………21
Figure 4…………………………………………………………………22
Figure 5…………………………………………………………………22
Figure 6…………………………………………………………………23
Figure 7…………………………………………………………………24
Figure 8…………………………………………………………………24
Figure 9…………………………………………………………………25
Figure 10……………………………………………………………….26
Figure 11……………………………………………………………….26
Figure 12 ………………………………………………………………27
List of Table
Table 1………………………………………………………………..…28
Table 2……………………………………………………………..……28
Table 3…………………………………………………………..………28
Table 4…………………………………………………………..………29
Table 5…………………………………………………………..………29
Table 6…………………………………………………………..………29
Table 7…………………………………………………………..………30
Table 8…………………………………………………………..………30
Table 9…………………………………………………………..………30
Table 10…………………………………………………………………31
Table 11…………………………………………………………………31
Table 12 …………………………………………………...……………31
參考文獻 Reference
A. Brace, D. Gatarek, and M. Musiela, “The Market Model of Interest Rate Dynamics,” Mathematical Finance, Vol. 7, No.2 (April 1997). pp. 127-155.
BRACE, A., and M. MUSIELA (1994a): “A Multifactor Gauss-Markov Implementation of Heath, Jarrow and Morton,” Math Finance, 2, 259-283.
Brigo. Mercurio, “ Damano Brigo Fabio Mercurio,” 2001.
Chance, Don M, and Don R. Rich “Asset Swaps With Asian-style Payoffs.” The Journal of Derivatives, Summer 1996, pp. 64-77.
Chang. C.C and S.L. Chung (2002), “Pricing Asian Style Interest Rate Swaps,” The Journal of Derivatives, pp. 45-55.
Geman,H.,and M. Yor. “Besel Process, Asian Options and Perpetuties.” Mathematical Finance, 3 (1993), pp. 349-375.
Goldy, B., M. MUSIELA, and D. SONDERMANN. (1994): “Lognormality of Rates and Term Structure Models,” pre-print, The University of NSW.
Kemna, A.G.Z., and A.C.F. Vorst. “A Pricing Method for Options Based on Average Asset Values.” Journal of Banking and Finance, 14 (1990), pp. 113-124.
Levy, Edmond. “Pricing European Average Rate Currency Options.” Journal of International Money and Finance, 11 (1992), pp. 474-491.
Longstaff, Francis A. “Hedging Interest Rate Risk With Options on Average Rates.” The Journal of Fixed Income, March 1995, pp. 789-819.
Longstaff, Francis A., and Eduardo S. Schwartz. “A Simple Approach to Valuing Risky Fixed and Floating Rate Debt. ” Journal of Finance, July 1995, pp. 789-819.
Miltersen, K., K. Sandmann, and D.Songermann. (1995). “Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates, ”pre-print, University of Bonn.
Musiela, M. (1995): “General Framework for Pricing Derivative Securities,“ Stoch. Process Appl., 55, 227-251.
Rogers, L., and Z. Shi. “The Value of An Asian Options.” Journal of Applied Probability, 32 (1995), pp. 1077-1088.
指導教授 張傳章(Chuang-Chang Chang) 審核日期 2006-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明