參考文獻 |
1.F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35, 363-371 (1968).
2.A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39, 964-970 (1972).
3.A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth :Part Ⅰ - yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, 2-15 (1977).
4.U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53, 485-490 (1986).
5.A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63, G49-G53 (1990).
6.H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40, 571-592 (1992).
7.C.O.Horgan and D.A.Polignone,Cavitation in nonlinearly elastic solids: a review.Appl.Mech.Rev., 48, 471-485 (1995).
8.J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306, 557-610 (1982).
9.C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2, 33-66 (1985).
10.C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16, 189-200 (1986).
11.F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50, 201-226 (1992).
12.S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material J.Appl.Mech. 61, 395-401 (1994).
13.S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30, 899-914 (1995).
14.H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30, 693-706 (1996).
15.X.-C. Shang and C.-J. Cheng, Exact solution for cavitated bifurcation for compressible hyperelastic materials. Int.J.Engrg.Sci., 39, 1101-1117 (2001).
16.M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27, 967-973 (1989).
17.P.J. Blatz and W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials. Trans.Soc. Rheol., 6, 223-251 (1962).
18.A. Mioduchowski and J.B. Haddow, Combined torsional and telescopic shear of a compressible hyperelastic tube. J. Appl. Mech., 46, 223-226. (1979)
19.M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub, 1, 191-202 (1998).
20.M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci, 38, 1481-1496 (2000).
21.L.V. Ovsiannikov, Group Analysis of Differential Equations (W. F. Ames, trans.). Academic Press, New York (1982).
22.N.H. Ibragimov, Tramsformation groups applied to mathematical physics. Reidel, Boston( 1985).
23.P.J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1986).
24.G.W. Bluman and S. Kumei , Symmetries and Differential Equations. Springer-Verlag , New York (1989).
25.S. Maeda, Canonical structure and symmetries for discrete systems. Math. Japan, 25, 405-420 (1980).
26.Ju. I. Sokin, The Method of Differential Approximation. Spring-Verlag, New York (1983).
27.S. Maeda, The similarity method for difference equations. J. Inst. Math. Appl, 38, 129-134 (1987).
28.V.A. Dorodnitsyn, Transformation groups in a space of difference variables. J. Sov. Math., 55, 1490-1517 (1991).
29.W.F. Ames, F.V. Postell and E. Adams, Optimal numerical algorithsm. Appl.. Numer. Math, 10, 235-259 (1992).
30.V.A. Dorodnitsyn, and P. Winternitz, Lie point symmetry preserving discretizations for variable coefficient Korteweg-de Vries equations. Nonlinear Dyn, 22, 49-59 (2000).
31.H.K. Hong and C.S. Liu, Lorentz group SO(5,1) for perfect elastoplasticity with large deformation and a consistency numerical scheme. Int. J. Nonlinear Mech. 34, 1113-1130 (1999).
32.V.A. Dorodnitsyn, R. Kozlov, and P. Winternitz, Lie group classification of second order ordinary differential equations. J. Math. Phys., 41, 480-504 (2000).
33.V.A. Dorodnitsyn, and R. Kozlov, Heat transfer with a source: the complete set of invariant difference schemes. J. Nonliner Math. Phys., 10, 16-50 (2003).
34.D. Levi, S. Tempesta and P. Winternitz, Umbral calculus, difference equations and the discrete Schrodinger equation. J. Math. Phys., 45, 4077-4015 (2004).
35.F. Valiquette and P. Winternitz, Discretization of partial differential equations preserving their physical symmetries. J. Phys. A:Math. Gen., 38, 9765-9783 (2005).
36.C.S. Liu and Y.L. Ku, A combination of group preserving scheme and Runge-Kutta method for the intergration of Landau-Lifshitz equation. CMES-Computer Modeling Engrg. Sci., 9, 151-177 (2005).
37.A. Bourlioux, C. Cyr-Gagnon and P. Winternitz, Difference schemes with point symmetries and their numerical tests. J. Phys. A: Math. Gen., 39, 6877-6896 (2006).
38.C.S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation. CMES-Computer Modeling Engrg. Sci., 12, 55-65 (2006).
39.H.C.Lei(李顯智), Journal of the Chinese Institude of Engineers, Vol. 30, 557-567 (2007). |