博碩士論文 944308004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.128.168.219
姓名 馬其明(Chi-Ming Ma)  查詢紙本館藏   畢業系所 財務金融學系在職專班
論文名稱 匯率風險值衡量之實證研究-以新台幣、日圓、英鎊、歐元匯率為例
(Study on the Measurement of Foreign Exchange Risk:VaR Measurement and Back-testing on New Taiwan Dollar,Japanese Yen,British Pound and Euro)
相關論文
★ 最適指數複製法之自動化建置:以ETF50為例★ 台灣公債市場與台幣利率交換交易市場動態關聯性之研究
★ 企業貸款債權證券化--信用增強探討★ 停損點反向操作指標在台灣期貨市場實證
★ 投資型保單評價-富邦金吉利保本投資連結型遞延年金保險乙型(VANB5)★ 停損點反向操作指標在台灣債券市場實證
★ 探討央行升息國內十年期指標公債未同步上升之原因★ 信用風險模型評估—Merton模型之應用
★ 資產管理公司購買不動產擔保不良債權評價之研究★ 股票除息對期貨與現貨報酬之影響
★ 主權基金的角色定位與未來影響力之研究★ 我國公債期貨之研究分析
★ 用事件研究法探討希臘主權債信危機-以美國及德國公債為例★ 企業避險及財務操作之實例探討
★ 台灣期貨市場之量價交易策略★ 金融交易之信用風險管理制度之研究:以民營銀行為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自一九七O年代初期國際貨幣體系進入了浮動匯率時代,近三十多年來,匯率對一個國家之經濟活動具有重要的影響,匯率過度波動不僅為經濟帶來不利影響,還會影響商品的價格而導致價格扭曲。傳統之匯率風險管理方法是著重在總體經濟的研究,但是匯率的變動並非僅以傳統的總體經濟的基本理論來解釋,於是近年來新的匯率風險管理方式,已成學術界、金融業甚或企業的重要課題。
本文將風險值概念及衡量風險值之模型作一個簡單介紹後,主要著眼於外匯市場風險值問題的探討,分別依不同之風險值評估方法計算風險值(Value at Risk ,VaR),並用不同之回溯測試方法檢定不同之風險值評估方法與實際發生之風險其中之誤差,藉由其異質性來探討各個不同之風險值評估方法對匯率波動之適用性。
本研究結論如下:
1.整體而言,本研究中除美元兌換台幣之匯率外,指數加權移動平均法(EWMA)及等權移動平均法(MA)多優於歷史模擬法與蒙地卡羅模擬法。
2.指數加權移動平均法(EWMA)在中長期風險檢測有不錯之表現,主要是假設過去的資料與鄰近的資料對參數估計的效果不同,λ值愈小,代表最近的觀察值愈能包含最多的資訊。
3.歷史模擬法之誤差除了美元兌換台幣外則最大,有極端情況產生時極易低估風險或高估風險,這跟歷史資料之取樣有關,所以在本文第三章第二節中提及補救之方法:即指數加權移動平均法(EWMA)及拔靴複製法(Bootstrapping Methods)以增加其檢測風險之準確性。
4.蒙地卡羅模擬法,蒙地卡羅模擬法基本上是基於大數法則的實證方法,當其模擬之次數越多,愈能將各種較極端之風險情形考慮進去,其平均值會越趨近於理論值,在本研究中其結果在日圓、英鎊及歐元與MA較接近,另外在台幣方面則與EWMA較接近。
摘要(英) This thesis is focusing on the study of measurement of VaR in the foreign exchange(FX)market. We use four different VaR evaluation models to measure the VaR, and then use three different back-testing methods to verify which the relatively best model will apply for in different FX markets with respective confidence level and window length.
We conclude this study as listed below:
First, Generally, the EWMA method and MA method are relatively better methods than historical simulation method and monte carlo simulation method, except for the USD against TWD fx market.
Second, For the EWMA method, it usually performs well for the VaR measurement in the mid-term(150 days)and long-term(250 days)FX markets, due to the presuming that the nearer and farther data in history use different parameter λ, the smaller λ represents coverage of more latest data. We use 0.94 as λ in this study.
Third, for the historical simulation method, the FX risk will be devaluated or over-valuated in the extreme situations. This is because the outcome of the study depends on what the sampling of the historical data we take. In the section 2 of the chapter 3 in this thesis, we have mentioned two methods to make up or minimize the differences in measuing VaR, those are EWMA method and Bootstrapping method.
Fourth, For the monte carlo simulation method, the more times we simulate, the more extreme situations will be considered. In this study, we find that the results are very close to MA in JPY, GBP and EUR FX markets. On the other hand, it is very close to EWMA in the USD against TWD fx market .
關鍵字(中) ★ 風險值
★ 外匯市場
★ 匯率風險
關鍵字(英) ★ Value at Risk
★ Exchange rate risk
★ Foreign exchange market
論文目次 中文摘要............................................................................................................................ i
英文摘要...........................................................................................................................ii
目錄.................................................................................................................................iii
圖目錄.............................................................................................................................. iv
表目錄..............................................................................................................................vi
一、緒論........................................................................................................................... 1
1-1 研究背景......................................................................................................... 1
1-2 研究動機......................................................................................................... 1
1-3 研究目的......................................................................................................... 3
1-4 研究架構與流程............................................................................................. 5
1-4-1 研究架構............................................................................................... 5
1-4-2 研究流程............................................................................................... 6
二、文獻回顧................................................................................................................... 7
2-1 風險值之定義................................................................................................. 7
2-2 風險值之衡量方法......................................................................................... 8
2-3 國內外文獻之探討......................................................................................... 8
2-3-1 國內文獻............................................................................................... 8
2-3-2 國外文獻............................................................................................. 10
三、研究方法................................................................................................................. 12
3-1 變異數-共變異數法..................................................................................... 12
3-2 歷史模擬法(Historical Simulation Methods)..................................... 14
3-3 蒙地卡羅模擬法(Monte Carlo Simulation Methods)........................... 15
3-4 回溯測試....................................................................................................... 17
四、實證結果................................................................................................................. 19
4-1 資料來源與說明........................................................................................... 19
4-2 台幣匯率之實證結果................................................................................... 20
4-3 日幣匯率之實證結果................................................................................... 26
4-4 英鎊匯率之實證結果................................................................................... 32
4-5 歐元匯率之實證結果................................................................................... 38
五、結論與建議............................................................................................................. 46
5-1 研究結論....................................................................................................... 46
5-2 研究建議....................................................................................................... 46
參考文獻......................................................................................................................... 48
參考文獻 國內文獻:
[1] 王俊懿(2000),「金融組合風險值之研究」,國立臺灣大學國際企業研究所,碩士論文。
[2] 何中達編譯(2005),國際財務管理(Multinational Business Finance)- David K. Eiteman, Arthur I. Stonehill and Michael H. Moffet原著,初版,
台北:學富, PP. 155-155
[3] 宋文仁(1996)「投資組合之關聯度分析與使用 Value-at-Risk 模型衡量其市場風險」,中原大學企業管理研究所,碩士論文。
[4] 李進生、謝文良、林允永、蔣沼坪、陳達新、盧陽正(2001),風險管理-風險值(VaR)理論與應用,新竹:清蔚科技, PP. 4-3、7-16
[5] 周忠賢(2000)「風險值衡量方法的比較-匯率之實證研究」,輔仁大學金融研究所,碩士論文。
[6] 陳木在、陳錦村(2001),商業銀行風險管理,一版,台北:新陸 PP. 40-41、55-56
[7] 陳佩鈴(2002)「匯率條件風險值之估計與比較」,中原大學國際貿易研究所,碩士論文。
[8] 陳達新、周恆志(2006),財務風險管理-工具、衡量與未來發展,初版,
台北:雙葉, PP.138-212
[9] 彭華櫻(2003),「風險值的衡量與驗證-匯率的實證研究」,淡江大學財務金融研究所,碩士論文。
[10] 黃冠瑋(1999),「結合蒙地卡羅模擬法與波動性模型之涉險值分析」,淡江大學財務金融研究所,碩士論文。
[11] 黃達業、張容容譯(2005),風險值(Value at Risk)-金融風險管理的新基準,增修訂二版,台北:台灣金融研訓院,Philippe Jorion原著,PP.4-10、21-27、32-47、103-140、177-245
國外文獻:
[1] Alexander, C. and C. Leigh, (1997), “On the Covariance Matrices Used in VaR Models”, Journal of Derivatives, pp.50-62,
[2] Beder, T. S. (1995), “VaR:Seductive but Dangerous” ,Financial Analysts Journal, Vol. 51, (September-October), pp. 12-24.
[3] Bollerslev, T., (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31, pp.307-327.
[4] Marrison ,Chris (2002), The Fundamentals of Risk Measurement, McGraw Hill, pp. 96-160
[5] Danielsson, J. and C. G. de Vries, (2000), “Value-at-Risk and Extreme Returns”, London School of Economics, Financial Markets Group Discussion Paper, no.273.
[6] Engle, R. F. and S. Manganelli (1999), “CAViaR:Conditonal Autoregressive Value at Risk by Regression Quantiles”, Manuscript, University of California, San Diego.
[7] Engle, R. F., (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U. K. Inflation”, Econometrica, Vol. 50, pp. 87-108.
[8] Grabbe, O. J. (1991), International Financial Markets, 2nd Edition. Chapter 1. Elsevier, New York
[9] Hendricks, D. (1996) , “Evaluation of Value-at-risk Models Using Historical Data”,Economic Policy Review, Federal Reserve Bank of New York, Vol. 2, pp. 39-69.
[10] Hopper, G. P. (1996) , “Value at risk:A New Methodology for Measuring Portfolio Risk”, Business Review, Federal Reserve Bank of Philadelphia, July, pp.19-31.
[11] Hull, J. and A. White (1998), “Incorporating Volatility Updating into the Historical Simulation Method for Value-at-Risk” , Journal of Risk , Fall, University of Toronto, pp. 5-19.
[12] J. P. Morgan, (1996), RiskMetrics-Technical Document, Fourth Edition.
[13] Jorge, M. and Xiao, Jerry Yi(2001), “Return to RiskMetrics:The Evolution of a Standard” ,New York , NY:RiskMetrics.
[14] Jorion ,Philippe, (1997a) ,“Value at Risk-The New Benchmark for Controlling Market Risk”, Irwin Professional, Illinois
[15] Jorion ,Philippe, (1997b), “Risk2:Measuring the Risk in Value at Risk”,Financial Analysts Journal , pp.47-56, November .
[16] Jorion ,Philippe(2000), Value at Risk:The New Benchmark for Controlling Market Risk, McGraw-Hill, New York.
[17] Jorion, Philippe(1996), “Risk:measuring the risk in Value at Risk” Financial Analysts Journal 52, November, pp. 47-56
[18] Khindanova, I., S. Rachev and E. Schwartz(2001), “Stable Modeling of Value at Risk”, Mathematical and Computer Modeling, 34 (2001), pp. 1223-1259.
[19] Kupiec, P. H, (1995), “ Techniques for Verifying The Accuracy of Risk Measurement Model”, The Journal of Derivatives , Vol. 2, pp. 73-84.
[20] Venkataraman, S., (1997), “ Value at Risk for a Mixture of Normal Distributions: The Use of Quasi-Bayesian Estimation Techniques”, Economic Perspectives, Federal Reserve Bank of Chicago, Vol. 21, No. 2, (March-April), pp. 2-13.
指導教授 張傳章(Chuan-Chang Chang) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明