博碩士論文 953202015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.21.247.78
姓名 莊靜怡(Ching-yi Chuang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用HHT頻譜於結構物地震損傷之研究
相關論文
★ 國際巨災保險制度之研究★ 我國推動地方層級災害防救專責單位之問題探討-以桃園縣為例
★ 公共危險物品保安監督之探討-以新竹縣為例★ 長期照顧機構消防安全設計與防火避難設施之研究
★ 考慮土壤結構互制效應並裝設減振裝置的高層建築氣動力反應之研究★ 結合模糊控制與類神經網路探討非線性結構控制的穩定性
★ 觀光產業天然災害風險評估與管理★ 天然災害風險管理決策方法建立—以地震災害為例
★ 颱洪災害風險評估推測事件資料庫之建置及應用★ 火災現場指揮幕僚運作探討-以桃園市政府消防局為例
★ 科學園區地震緊急應變計畫之研擬★ 地震災害風險評估及地震保險之風險管理
★ 園區建築物耐震能力評估★ 整合性多目標地震風險評估系統之建立
★ 適應性模糊滑動模態控制在結構工程上應用之研究★ 高樓結構裝設調和液柱阻尼器減振效應之風洞實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 依據ATC-40及FEMA-273以層間變位角作為結構物之損傷指標。本文採用國家地震中心所發表之兩組震動台試驗,其震動台分別輸入Kobe及El Centro地震力,並將數據藉由加速度二次積分及測得的真實位移計算層間變位角,得知層間變位角無法看出結構物降伏損害位置。
因此,本文另外採用HHT方法探討結構物損傷偵測之可能性,並定義頻寬比(RB)作為損傷指標。將震動台數據進行HHT及FFT分析並計算頻寬比,藉由頻寬比進一步了解結構物損傷情形。
研究成果顯示:
(1)當結構物在線彈性反應時,頻寬比在HHT邊際譜與FFT頻譜中僅有微小改變。
(2)當結構物進入非線性反應後,觀察HHT邊際譜發現頻寬比有明顯增加之情形,藉此可獲得結構物的降伏發生。相反的,FFT頻譜無法看出此現象。
(3)頂樓之頻寬比變化相較於其它樓層明顯。
(4)分析頂樓之加速度反應可偵測結構物是否發生損害。
因此,將HHT邊際譜進行平滑處理所得之頻寬比運用於結構物損害中,是項成功的損傷指標。
摘要(英) Referring to the ATC-40 and FEMA-273, the interstory drift is used as a damage detection index. This research uses two benchmark models which built by the National Center for Research on Earthquake Engineering (NCREE). Shaking table test data from benchmark models subjected to adjusted Kobe and El Centro earthquakes are analyzed to evaluate interstory drift using the acceleration integration method and measured displacement (LVDT). The results of the yielding point in interstory drift curve are difficult to find out when member damage occurs.
Therefore, this study investigates the feasibility of detecting structural damage using the HHT method and the Ratio of Bandwidth (RB) is proposed as the damage detection index. Shaking table test data are analyzed to evaluate the RB using the Hilbert-Huang Transform (HHT) and the Fast Fourier Transform (FFT) methods, respectively.
The result of this study shows that:
(1)When the response of the structure is in the elastic region, there is very small change in the RB value from the HHT spectra and the FFT spectra.
(2)The incremental change in RB estimated from the HHT spectra versus the PGA value can be seen when the structure response in nonlinear i.e., member yielding occurred, but not in the RB from the FFT spectra.
(3)The RB of the top floor reveals the highest change value than other floors.
(4)Structural damage can be detected using only the acceleration response data from the top floor.
Therefore, the ratio of bandwidth (RB) which estimated from the smoothed HHT spectra is an effective and sensitive damage index for the detection of structural damage.
關鍵字(中) ★ 損傷指標
★ 層間變位角
★ 半功率帶寬
★ 希爾伯特-黃轉換
關鍵字(英) ★ interstory drift
★ damage detection index
★ HHT
★ half-power bandwidth
論文目次 摘要 .......................................................................................................... I
Abstract ....................................................................................................... III
目錄 ...................................................................................................... VI
表目錄 ...................................................................................................... IX
圖目錄 ........................................................................................................ X
第一章 緒論 ................................................................................................... 1
1.1 研究動機與目的 ................................................................................ 1
1.2 文獻回顧 ............................................................................................ 2
1.3 論文內容 .......................................................................................... 16
第二章 希爾伯特-黃轉換(HHT)之基本理論 ............................................. 17
2.1 即時頻率 (Instantaneous Frequency)【25】 ................................. 17
2.2 內建模態函數(Intrinsic Mode Functions)【25】 .......................... 19
2.3 經驗模態分解法(Empirical Mode Decomposition)【25】 ........... 22
2.4 IMF 分量的完整性與正交性 ......................................................... 29
2.5 整體經驗模態分解(Ensemble Empirical Mode Decomposition)
.......................................................................................................... 34
2.6 希爾伯特頻譜(Hilbert Spectrum) ................................................... 36
第三章 結構物標竿模型之損傷分析及方法 ............................................. 39
3.1 標竿模型介紹 .................................................................................. 39
3.1.1 標竿模型尺寸介紹 ............................................................. 40
3.1.2 標竿模型感應器裝置 ......................................................... 42
3.1.3 標竿模型之地震力歷時紀錄 ............................................. 45
3.2 層間變位角(Story Drift Ratio)之定義及其應用分析過程 ........... 47
3.3 非線性分析-SAP2000 ..................................................................... 48
3.3.1 SAP2000 之標竿模型設定 ................................................. 48
3.3.2 非線性動力歷時分析 ......................................................... 51
3.4 定義損傷指標 .................................................................................. 54
第四章 分析結果與討論 ............................................................................. 58
4.1 層間變位角分析標竿模型 ............................................................. 58
4.1.1 標竿模型A 之層間變位角分析結果 ................................. 61
4.1.2 標竿模型B 之層間變位角分析結果 ................................. 65
4.2 小結 .................................................................................................. 68
4.3 頻寬比分析標竿模型 ...................................................................... 69
4.3.1 標竿模型A 之頻寬比分析結果 ......................................... 71
4.3.2 標竿模型B 之頻寬比分析結果 ......................................... 85
4.3.3 綜合比較 ............................................................................. 94
第五章 結論與建議 ..................................................................................... 98
5.1 結論 .................................................................................................. 98
5.2 建議 .................................................................................................. 99
參考文獻 ..................................................................................................... 100
參考文獻 1. Doebling, S.W, Farrar, C.R., and Prime, M.B., ”A summary review of vibration-based damage identification methods”,The Shock and Vibration Digest, Vol. 30, pp. 91-105, 1998.
2. Rytter, A., “Vibration based inspection of civil engineering structures”, PhD dissertation Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993.
3. Pandey A.K. and Biswas M, “Damage detection from changes in curvature mode shapes”, Journal of Sound and Vibration, Vol. 145, No. 2, pp.321-332, 1991.
4. Lin, C.S., “Location of modeling errors using modal test data”, AIAA Journal, Vol. 28, No. 9, pp. 1650-1654, 1995.
5. Pandey A.K. and Biswas M, “Damage detection in structures using changes in flexibility”, Journal of Sound and Vibration, Vol. 169, No. 1, pp. 3-16, 1994.
6. Farrar, C.R., Doebling, S.W., and Duffey, T.A., “Vibration-based damage detection”, SD2000, Struct. Dyn. Forum, 1999.
7. Hielmstad, K.D. and Shin, S., “Damage detection and assessment of structures from static response”, Journal of Engineering Mechanics, Vol. 123, pp. 568-576, 1997.
8. Aktan, E., Brown, D., Farrar, C., Helmicki, A., Hunt, V. and Yao, J., “Objective Global condition assessment”, Proceedings of SPIE-the international society for optical engineering, Vol. 3089, pp. 364, 1997.
9. Staszewski, W.J., “Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform”, Journal of Sound and Vibration, Vol. 214, No. 4, pp. 639-658, 1998
10. Farrar, C.R. and Jauregui, D.A., “Comparative study of damage identification algorithms applied to a bridge: I. Experiment”, Smart Materials and Structures, Vol. 7, No. 5, pp. 704-719, 1998.
11. Farrar, C.R. and Jauregui, D.A., “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study”, Smart Materials and Structures, Vol. 7, No. 5, pp. 720-731, 1998.
12. Zhao, J., DeWolf, J., and ASCE, fellow, “Sensitivity study for vibrational parameters used in damage detection”, Journal of Structural Engineering, Vol. 125, pp. 410-416, 1999.
13. Ghobarah, A., Abou-Elfath, H. and Biddah, A., “Response-based damage assessment of structures”, Earthquake Engineering and Structural Dynamics, Vol. 28, pp. 79-104, 1999.
14. Hu, N., Wang, X., Fukunaga, H., Yao, Z.H., Zhang, H.X., and Wu, Z.S., “Damage assessment of structures using modal test data”, International Journal of Solids and Structures, Vol. 38, pp. 3111-3126, 2001.
15. Wang, X., Hu, N., Fukunaga, H. and Yao, Z.H., “Structural damage identification using static test data and changes in frequencies”, Engineering Structures, Vol. 23, pp. 610-621, 2001.
16. Masri, S.F., Nakamura, M., Chassiakos, A.G.. and Caughey, T.K., “Neural network approach to detection of changes in structural parameters”, Journal of Engineering Mechanics, ASCE, Vol. 122, No. 4, pp. 350-360., 1996.
17. Nakamura, M., Masri, S.F., Chassiakos, A.G.. and Caughey, T.K., “A method for non-parametric damage detection through the use of neural networks”, Earthquake Engineering Structural Dynamics, Vol. 27, pp. 997-1010, 1998.
18. Huang, C.C. and Loh, C.H., “Nonlinear identification of dynamic systems using neural networks”, Computer-Aided Civil and Infrastructure Engineering, Vol. 16, pp. 28-41, 2001.
19. Sun, Z. and Chang, C.C., “Structural damage assessment based on wavelet packet transform”, Journal of Structural Engineering, Vol.128, pp. 1354-1361, 2002.
20. Yam, L.H., Yan, Y.J. and Jiang, J.S., “Vibration-based damage detection for composite structures using wavelet transform and neural network identification”, Composite Structures, Vol.60, pp.403-412, 2003.
21. Barroso, L.R. and Rodriguez, R., “Application of the damage index method to phase II of the analytical SHM benchmark problem”, 15th ASCE Engineering Mechanics Conference, Columbia University, 2002.
22. Loh, C.H. and Lin, P.Y., “Structural health monitoring research at NCREE and NTU”, Columbia University, New York, USA, 2004.
23. 羅俊雄,林裕家,許丁友,「利用地震反應資料進行結構全域及局部性損害評估」,國家地震工程研究中心研究報告,NCREE-07-047,2007。
24. Cooley, J.W. and Tukey, J.W., “An algorithm for the machine calculation of complex Fourier series.” Mathematics of Computation, Vol. 19,No. 90, pp.297–301, 1965.
25. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu H.H, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp. 903-995, 1998.
26. Huang, N.E., Shen, Z., and Long, S.R., ‘‘A new view of nonlinear water waves: The Hilbert spectrum.’’ Annual. Review of Fluid Mechanics, Vol. 31, pp. 417–457, 1999.
27. Yang, J. N., and Lei, Y., ‘‘System identification of linear structures using Hilbert transform and empirical mode decomposition.’’ Proc., 18th Int. Modal Analysis Conf.: A Conf. on Structural Dynamics, Vol. 1, Society for Experimental Mech., Inc., Bethel, Conn., pp. 213–219, 2000.
28. Yang, J. N., and Lei, Y., ‘‘Identification of civil structures with nonproportional damping.’’ Proceedings of SPIE, Vol. 3988, pp. 284–294, 2000.
29. 吳政憲,「希爾伯特阻尼譜於高樓損傷評估之應用」,國立中央大學土木工程研究所碩士論文,2001年。
30. Zhang R.R., Ma S., Safak E., and Hartzell S., “Hilbert-Huang transform analysis of dynamic and earthquake motion recordings”, Journal of Engineering Mechanics, ASCE, Vol. 129, No. 8, pp. 861-875, 2003.
31. Yang J.N., Lei Y., Pan S. and Huang N.E., “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes”, Earthquake Engineering and Structural Dynamics, Vol. 32, No. 9, pp. 1443-1467, 2003.
32. Yang J.N., Lei Y., Pan S. and Huang N.E., ‘‘Identification of linear structures based on Hilbert-Huang transform. Part II: Complex modes.’’, Earthquake Engineering and Structural Dynamics, Vol. 32, No. 10, pp. 1533–1554, 2003.
33. Yang JN, Lei Y, Lin S, Huang N., “Hilbert–Huang based approach for structural damage detection.” Journal of Engineering Mechanics, ASCE, Vol. 130, No.1, pp. 85–95, 2004.
34. Lin, S., Yang, J. N. and Zhou, L., “Damage identification of a benchmark building for structural health monitoring.” Smart Materials Structures, Vol. 14, pp. S162–S169, 2005.
35. Pines, D. and Salvino, L., “Structural health monitoring using empirical mode decomposition and the Hilbert phase.” Journal of Sound and Vibration, Vol. 294, pp. 97-124, 2006.
36. Wu, Z. and Huang, N.E., “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.” Centre for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173, 2004.
37. Su, S. C., Huang, N. E., and Wen, K.L., “A new spectral representation of strong motion earthquake data: Hilbert spectral analysis of Taipower building station, 1994~2006.” Proc., 5th Int. Conf. on Urban Earthquake Engineering, Tokyo, Japan, 2008.
38. Norden E Huang and Samuel S P Shen, ” Hilbert-Huang Transform and Its Applications”, World Scientific Publishing Co., Pub:9,pp. 305-334, 2005.
39. Copson, E. T., “Asymptotic Expansions”, Cambridge University Press, Cambridge., 1967.
40. Pandey, J. N., “The Hilbert transform of Schwartz distributions and applications”, New York : John Wiley, 1996.
41. Gabor, D., “Theory of communication”, Proc. IEE, Vol. 93, pp. 429-457, 1946.
42. Tichmarsh, E. C., “Introduction to the theory of Fourier Integrals”, Oxford University Press, Oxford., 1948.
43. Newland, D. E., “An introduction to Random Vibrations, Spectral & Wavelet Analysis”, John Wiley & Sons, Inc., New York., 1993.
44. Dazin, P. G.., “Nonlinear Systems”, Cambridge University Press, Cambridge., 1992.
45. Long, S. R., Huang, N. E., Lung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E., and Yuan, Y., “The Hilbert Techniques : An alternate approach for non-steady time series analysis”, IEEE Geoscience Remote Sensing Soc. Lttr. 3, pp. 6-11, 1995.
46. Whitham, G.. B., “Linear and Nonlinear waves”, John Wiley, New York, 1975.
47. Huang, N. E., Shen, Z., and Long, S. R., “A New View of Nonlinear Water Waves : The Hilbert Spectrum”, Annual Review of Fluid Mechanics, Vol. 31, pp. 417-457, 1999.
48. Applied Technology Council(ATC), Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1, ATC 40, Redwood City, CA,1996.
49. Federal Emergency Management Agency, NEHRP Guidelines for the Seismic Rehabilitaion of Buildings, FEMA-273, Building Seismic Safety Council, Washington D.C.,1997.
50. 葉士青,鄭橙標,羅俊雄,「五層樓縮尺鋼結構振動台試驗分析報告」,國家地震工程研究中心研究報告,NCREE-99-002,1999。
51. 林沛暘,羅俊雄,游信源,吳紀宏,「標竿鋼構樓房震動台試驗」,國家地震工程研究中心研究報告,NCREE-06-020,2006。
52. KUSUNOKI KOICHI, and TESHIGAWARA MASAOMI, “A new acceleration integration method to develop a real-time residue seismic capacity evaluation system.” Journal of Structural and Construction Engineering, No. 569, pp. 119-126. , 2003.
53. Chopra, A. K., “Dynamics of Structures”, second edition, Prentice Hall, 2000.
54. Chou Ya-lun., Statistical Analysis, 2d ed. New York: Holt Rinehart and Winston, pp. 562–565. , 1975.
指導教授 蔣偉寧、許文科
(Wei-Ling Chiang、Wen-ko Hsu)
審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明