以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:51 、訪客IP:18.191.200.114
姓名 林友勝(You-Sheng Lin) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 不等向壓密飽和夯實土壤之動態變形行為
(Dynamic Deformation Behavior of Saturated Compacted Soils Under Anisotropic Consolidation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究的試驗土樣取自於湖山水庫借土區共三種土樣,即殼層土壤SM、ML 與心層土壤CL。採用單位體積能量法之概念,利用特製夯模製作標準夯實能量下之重模試體,並以改良的飽和方法使夯實試體達飽和。由於土石壩是分區滾壓夯實構築而成,壩體內部的靜態應力除了水平與垂直應力外,尚包含初始剪應力。因此,夯實土壤的動態強度與變形特性除需考慮等向壓密狀態,尚須考慮非等向壓密狀態,本研究控制有效圍壓1kg/cm2,施作等向壓密與非等向壓密應力比(Kc= )Kc=1.5和Kc=2.0狀態下三種夯實土樣之動力三軸試驗,以瞭解夯實土壤在不同壓密應力比下之動態強度、孔隙水壓變化與變形之特性。
試驗結果顯示,初始剪應力比愈大的夯實土壤,其動態強度愈強,激發的超額孔隙水壓愈低,且土壤到達破壞時所需之反覆應力比愈大。與貓羅溪砂性土壤的動態試驗結果相比,可知夯實土壤的動態強度遠高於貓羅溪砂性土壤,其超額孔隙水壓隨動態荷載的作用週數增加而趨於穩定,在等向壓密狀況下的超額孔隙水壓比至多達0.8,非等向壓密的水壓比約為0.5~0.7,不會像一般砂性土壤發生液化破壞之現象。從有效應力路徑可觀察出夯實土壤在反覆受剪的過程中,有顯著的剪脹性,動態變形量也會隨作用週數趨於穩定,可合理地推測夯實土壤在震後僅會發生有限的變形。並將試驗結果再整理成不同壓密應力比下反覆剪應力比與殘餘剪應變之關係及再壓密體積應變與剪應變關係曲線,可用於估算土石壩受震所產生之永久變形與沉陷,供工程界參考。摘要(英) The cyclic strength of compacted soil is very different from ordinary sandy soil. In order to study the dynamic strength of compacted soil, this paper performed a series of dynamic triaxial tests on three kinds of compacted soils, SM, ML and CL for constructing an earth dam. This paper proposed a vacuum method for improving the saturation of compacted soils. Test results showed that both methods make the Skempton’s coefficient B of all specimens greater than 0.95. Compacted soils of the earth dam have different initial shear stress conditions which range from Kc=1.5 to Kc=2.0. Based on the test results, the higher initial shear stress ratio, the larger the dynamic strength and the less the pore water pressure. Dynamic strength of compacted soil is stronger than ordinary medium dense sand. Compacted soils have no liquefaction potential due to their shear dilation behavior and only sustain limited cyclic strain. 關鍵字(中) ★ 動態強度
★ 動力三軸試驗
★ 土石壩關鍵字(英) ★ Earth dam
★ Dynamic triaxial test
★ Dynamic strength
★ Compacted soils論文目次 目錄
內容 頁次
中文摘要………………………………………………………………………I
英文摘要…………………………………………………………………II
誌 謝………………………………………………………………………III
目 錄……………………………………………………………………IV
表 目 錄……………………………………………………………………VII
圖 目 錄……………………………………………………………………IX
符號說明……………………………………………………………XIV
第一章 緒論……………………………………………………………………1
1.1研究目的…………………………………………………………1
1.2 研究方法…………………………………………………………1
1.3 論文內容…………………………………………………………1
第二章 文獻回顧……………………………………………………2
2.1 夯實試體均勻度之探討…………………………………………2
2.2 有初始剪應力條件下之動態荷載………………………………2
2.3 動態強度與破壞準則之定義……………………………………3
2.4 側向柵狀濾紙的影響……………………………………………4
2.5 超額孔隙水壓之激發…….……………………………………4
2.6 初始剪應力對動態強度之影響…………………………………6
2.7 土壤於動態載重後再壓密之體積應變量………………………7
2.8 國內土石壩之動態強度…………………………………………7
2.9 國外土石壩之動態強度………………………………………12
第三章 試驗規劃……………………………………………………41
3.1 研究場址與試驗土樣……………………………………………41
3.2 物理性質試驗…………………………………………………42
3.3 夯實重模試體製作方法………………………………………42
3.3.1 夯實重模試體………………………………………………42
3.3.2 貓羅溪砂試體………………………………………………45
3.4 試驗儀器………………………………………………………45
3.4.1 控制系統…………………………………………………46
3.4.2 量測系統…………………………………………………46
3.4.3 動力系統…………………………………………………47
3.4.4 訊號擷取紀錄系統………………………………………48
3.4.5三軸室………………………………………………………49
3.5 儀器率定………………………………………………………49
3.6 更換設備………………………………………………………49
3.7 動態試驗………………………………………………………49
3.8 資料處理………………………………………………………53
第四章 試驗結果……………………………………………………66
4.1 試驗規畫………………………………………………………66
4.2 柵狀濾紙使用之探討…………………………………………66
4.3 飽和方法改良之探討…………………………………………67
4.4 彈性模數與柏松比……………………………………………68
4.5 動態試驗之典型試驗結果…………………………………68
4.6 應力路徑……………………………………………………70
4.7 超額孔隙水壓………………………………………………71
4.8 動態強度結果比較…………………………………………73
4.9 動態載重下殘餘剪應變之行為……………………………74
4.10 體積應變與最大剪應變…………………………………76
第五章 結論與建議………………………………………………116
5.1結論…………………………………………………………116
5.2 建議…………………………………………………………118
參考文獻……………………………………………………………119
附錄A 夯實土壤實驗結果之附圖…………………………………122
附錄B 貓羅溪砂實驗結果之附圖…………………………………162參考文獻 參考文獻
1. 許曉峰,「臺北盆地基二區粉質黏土之大地工程特性」,碩士論文,國立中央大學土木工程研究所,中壢 (1992)。
2. 宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
3. 周旭宏,「台北盆地北投地區基隆河黏土之動態強度」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
4. 林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
5. 曾豐升,「現地土壤之液化強度與震陷特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2002)。
6. 簡才貴,「土石壩材料之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
7. Olson, R.E., and Kiefer, M.L., “Effect of lateral filter-paper drains on the triaxil shear characteristics of soils,” Dynamic Geotechnical Testing, ASTM, STP 361, American Society for Testing and Materials, pp. 482-491 (1964).
8. Seed, H. B. and Clarence K. C., “Clay Strength under Earthquake Loading Condition,” ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 53-78 (1966).
9. Hardin, B.O., and W.L. Black, “Vibration Modulus of Normally Consolidated Clay,” ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 94, No. SM2, pp. 353-369 (1968).
10. Seed, H.B., Mori, K., and Chan, C.K., “Influence of seismic history on the liquefaction characteristics of sands,” Report EERC 75-25, Earthquake Engineering Research Center, University of California, Berkeley, (1975).
11. Chang, C.S., Kuo, C.L., and Selig, E.T., “Pore pressure development during cyclic loading,” Journal of Geotechnical Engineering, Vol. 109, No. 1, pp. 103-107 (1983).
12. Nagase, H. and Ishihara, K., “Liquefaction-induced compaction and settlement of sand during earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 66-76 (1988).
13. Vucetic, M. and Dobry, R., “Degradation of Marine Clays under Cyclic Loading,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 114, No. 2, pp. 133-149 (1988).
14. Vucetic, M. and Dobry, R., “Effect of Soil Plasticity on Cyclic Response,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 117, No. 1, pp. 89-106 (1991).
15. Hyodo, M., Murata, H., and Yasufuku, N., “Undrained cyclic shear strength and residual shear strain of saturated sand by cyclic triaxial tests,” Soils and Foundations, Vol. 31, No. 3, pp. 60-76 (1991).
16. Ishihara, K., and Yoshimine, M., “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188 (1992).
17. Konrad, J.M., and Wagg, B.T., “Undrained cyclic loading of anisotropically consolidated clayey silts,” Journal of geotechnical Engineering, Vol. 119, No. 5, pp. 929-947 (1993).
18. Yasuhara, K., “Postcyclic Undrained Strength for Cohesive Soils,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 120, No. 11, pp. 1961-1979 (1994).
19. Erten, D., and Maher, M.H., “Cyclic undrained behavior of silty sand,” Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123 (1995).
20. Yasuda, N., Matsumoto, N., Yoshioka, R., and Takahashi M., “Undrained monotonic and cyclic strength of compacted rockfill material from triaxial and torsional simple shear tests,” Canadian Geotechnical Journal, Vol. 34, pp. 357-367 (1997).
21. Fall, M., Tisot, J.P., and Cisse, I.K., “Undrained behaviour of compacted gravel lateritic soils from western Senegal under monotonic and cyclic triaxil loading,” Engineering Geology, Vol. 47, pp. 71-87 (1997).
22. Mohajeri, M., and Towhata, I., “Stress-strain behavior of compacted sandy material under cyclic simple shear,” Soils and Foundations, Vol. 43, No. 6, pp. 75-89 (2003).
23. Yilmaz, M.T., Pekcan, O., and Bakir, B.S., “Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazari, Turkey,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 497-507 (2004).
24. Sawada, S., Tsukamoto, Y., and Ishihara, K., “Residual deformation characteristics of partially saturated sandy soils subjected to seismic excitation,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 175-182 (2006).
25. Xenaki, V.C., and Athanasopoulos, G.A., “Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam-Laboratory test results,” Soil Dynamics and Earthquake Engineering, Vol. 28, pp. 605-620 (2008).指導教授 黃俊鴻(Jin-hung Hwang) 審核日期 2008-10-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare