參考文獻 |
1. 王政嵐,「類螞蟻族群演算法於求解含凹形節線成本最小成本轉運問題之研究」,中央大學土木工程研究所碩士論文(2005)。
2. 王珮珮,「使用粒子群最佳化進行分散式系統之最佳工作分配」,暨南國際大學資訊管理學系碩士論文(2004)。
3. 田佳芸,「變動鄰域搜尋法於雙目標平行機台排程問題之研究」,元智大學工業工程與管理學系碩士論文(2006)。
4. 朱文正,「考量旅行時間可靠度之車輛途程問題─螞蟻族群演算法之應用」,國立交通大學交通運輸研究所碩士論文(2002)。
5. 李旺蒼,「以粒子群最佳化為基礎之混合式全域搜尋演算法求解含凹形節線成本最小成本轉運問題之研究」,中央大學土木工程研究所碩士論文(2006)。
6. 李亮、遲世春、褚雪松,「基於修復策略的改進和聲搜索演算法求解土坡非圓臨界滑動面」,中國岩土力學,第27卷,第10期(2006)。
7. 李亮、遲世春、鄭榕明、林皋,「一種新型遺傳演算法及其在土坡任意滑動面確定中的應用」,中國水利學報,第38卷,第2期(2007)。
8. 李岳倫,「以螞蟻識別系統進行零件分群」,大同大學資訊經營所碩士論文(2004)。
9. 林依潔,「整合模糊理論與螞蟻演算法於含時窗限制之車輛途程問題」,國立台北科技大學生產系統工程與管理研究所碩士論文(2002)。
10. 段建帆,「支援向量機之最佳化參數與屬性篩選之分散式資料探勘系統—以粒子群最佳化演算法為基礎 」,華梵大學資訊管理學系碩士論文(2004)。
11. 胡曉輝,「基於PSO演算法的神經網絡集成構造方法」,浙江大學學報 (2004)。
12. 郭禎祥,「直交調和搜尋最佳化演算法」,東海大學工業工程與經營資訊學系碩士論文(2006)。
13. 陳建榮,「含凹形節線成本最小成本網路流動問題之全域搜尋演算法研究」,中央大學土木工程研究所碩士論文(2002)。
14. 陳怡靜,「變動鄰域搜尋法於串並聯系統複置配置問題之研究」,元智大學工業工程與管理學系碩士論文(2004)。
15. 梁韵嘉、羅敏華、簡士超、康添啟,「變動鄰域搜尋法求解越野賽跑問題」, 第四屆台灣作業研究學會學術研討會暨2007年作業研究理論與實務學術研討會論文集(2007)。
16. 程哲廞,「變動鄰域搜尋法求解共同到期日之單機加權提早延遲問題」,國立臺灣科技大學工業管理系碩士論文(2005)。
17. 詹達穎,「模擬鍛鍊法求解車輛排程之探討」,中華民國運輸學會第九屆論文研討會論文集,第185-192頁(1994)。
18. 鄭佳琳,「結合門檻接受法與螞蟻演算法於求解車輛路線問題之研究」,中華大學運輸科技與物流管理所碩士論文(2006)。
19. 劉清祥,「粒子群演算法於結構設計及零工式排程之應用」,海洋大學系統工程暨造船學系碩士論文(2004)。
20. 劉德誠,「以PSO為基礎的臉部偵測系統」,長庚大學資訊管理研究所碩士論文(2005)。
21. 韓復華、林修竹,「TA與GDA巨集啟發式法在VRPTW問題上之應用」,中華民國第四屆運輸網路研討會,第83-92頁(1999)。
22. 韓復華、卓裕仁,「門檻接受法、成本擾動法與搜尋空間平滑法在車輛路線問題之應用研究與比較分析」,運輸學刊,第九卷,第三期,第103-129頁(1996)。
23. 韓復華、陳國清、卓裕仁,「成本擾動法在TSP問題之應用」,中華民國第二屆運輸網路研討會論文集,第283-292頁(1997)。
24. 韓復華、楊智凱,「門檻接受法在TSP問題上之應用」,運輸計劃季刊,第二十五卷,第二期,第163-188頁(1996)。
25. 韓復華、楊智凱、卓裕仁,「應用門檻接受法求解車輛路線問題之研究」,運輸計畫季刊,第二十六卷,第二期,第253-280頁(1997)。
26. 顏上堯、周容昌、李其灃,「交通建設計畫評選模式及其解法之研究─以中小型交通建設計畫的評選為例」,運輸計畫季刊,第三十一卷,第一期(2002)。
27. 蘇昱豪,「具隨機粒子與微調機制式粒子群最佳化於多極值函數問題之研究」,國立臺灣科技大學機械工程系碩士論文(2005)。
28. Abuali, F. N., Wainwright, R. L. and Schoenefeld, D. A., “Determinant Factorization: ANew Encoding Scheme for Spanning Trees Applied to the Probabilistic Minimum Spanning Tree Problem,” Proceedings of The Sixth International Conference on GeneticAlgorithms, pp. 470-477 (1995).
29. Ahuja, R. K., Maganti, T. L. and Orlin, J. B., Network Flows, Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs (1993).
30. Alfa, A. S., Heragu, S. S. and Chen, M. “A 3-opt Based Simulated Annealing Algorithm for Vehicle Routing Problem,” Computers and Industrial Engineering, Vol. 21, pp. 635-639 (1991).
31. Alistair S., “Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow,” Springer Lecture Notes in Computer Science Vol. 583 (1992).
32. Amiri, A. and Pirkul, H., “New Formulation and Relaxation to Solve A Concave Cost Network Flow Problem,” Journal of the Operational Research Society, Vol. 48, pp. 278-287 (1997).
33. Balakrishnan, A. and Graves S. C., “A Composite Algorithm for a Concave-Cost Network Flow Problem,” Networks, Vol. 19, pp. 175-202 (1989).
34. Bielli, M., Caramia M. and Carotenuto P., “Genetic Algorithms in Bus Network Optimization,” Transportation Research, Part C 10, pp. 19-34 (2002).
35. Blumenfeld, D. E., Burns, L. D., Diltz, J. D. and Daganzo, C. F., “Analyzing Trade-offs Between Transportation, Inventory, and Production Costs on Freight Network,” Transportation Research, Vol. 19B, pp. 361-380 (1985).
36. Booker, L. B., Goldberg, D. E. and Holland, J. H., “Classifier Systems and Genetic Algorithms,” Technical Report, No. 8 (1987).
37. Burke, E.K., De Causmaecker, P., Petrovic, S., Berghe G.V., “Variable Neighbourhood Search for Nurse Rostering Problems,” Computer Decision-Making, Kluwer, pp. 153-172 (2003).
38. Charon, I. and Hurdy, O., “The Noising Method: A New Method for Combinatorial Optimization,” Operations Research Letters, Vol. 14, pp. 133-137 (1993).
39. Craig W. R., “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer Graphics, pp. 25-34 (1987).
40. Davidovic, T., Hansen, P. and Mladenovic, N., “Variable Neighborhood Search for Multiprocessor Scheduling Problem with Communication Delays,” Metaheuristics International Conference, Poroto, Portugal, pp. 737-741 (2001).
41. Davis, L., “Adapting Operator Probabilities in Genetic Algorithms,” The Third International Conference on Genetic Algorithms, pp. 61-69 (1989).
42. Deneubourg, J. L., S. Goss, N., A. Sendova-Franks, C. Detrain and L. Chretien, “The Dynamics of Collective Sorting Robot-like Ants and Ant-like Robots,” Proc. Of the 1st Conf. on Sim. of Adaptive Behavior, pp. 356-363 (1991).
43. Dorigo, M., Maniezzo, V. and Colorni, A., “The Ant System: An AutocatalyticOptimizing Process,” Technical Report No. 91-016 Revised, Politecnico di Milano, Italy (1991).
44. Dorigo, M. and Gambardella, L. M., “A Study of Some Properties of Ant-Q,” Proceedings of PPSN IV-Fourth International Conference on Parallel Problem Solving From Nature, September 22-27, 1996, Berlin, Germany, Berlin: Springer-Verlag, 656Ð665 (1996). (Also Tecnical Report TR/IRIDIA/1996-4, IRIDIA, Université Libre de Bruxelles.)
45. Dorigo, M. and L. M. Gambardella, “Ant Colonies for the Traveling Salesman Problem,” BioSystems, Vol. 43: pp. 73-81 (1997).
46. Drummond, L.M.A., Vianna, L.S., Silva, M.B. and Ochi, L.S., “Distribution Parallel Metaheuristics Based on GRASP and VNS for Solving the Traveling Purchaser Problem,” Proceedings of the 9th International Conference on Parallel and Distributed System, pp. 257-263 (2002).
47. Dueck, G., “New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel,” Journal of Computational Physics, Vol. 104, pp. 86-92 (1993).
48. Dueck, G. and Scheuer, T., “Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing,” Journal of Computational Physics, Vol. 90, pp.161-175 (1990).
49. Dukwon, K. and Panos, M., “Dynamic Slope Scaling and Trust Interval Techniques for Solving Concave Piecewise Linear Network Flow Problems,” Networks, Vol. 35, pp. 216-222 (2000).
50. Eberhart, R. C. and Kennedy, J. “A New Optimizer Using Particle Swarm Theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science,” pp. 39-43. IEEE service center, Piscataway, NJ, Nagoya, Japan (1995).
51. Eberhart, R. C. and Kennedy, J. , “Particle Swarm Optimization”, In proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp.1942-1948 (1995)
52. Eberhart, R. C. and Shi, Y. “Comparison Between Genetic Algorithms and Particle Swarm Optimization,” Evolutionary programming vii: proc. 7th ann. conf. on evolutionary conf., Springer-Verlag, Berlin, San Diego CA (1998).
53. Eberhart, R. C. and Shi, Y. “Particle Swarm Optimization: Developments, Applications and Resources,” Proc. congress on evolutionary computation 2001 IEEE service center, Piscataway, NJ., Seoul, Korea. (2001).
54. Frans van den B. and Engelbrecht A. P. “A Cooperative Approach to Particle Swarm Optimization,” IEEE Trans on Evolutionary Computation, pp.225-239 (2004).
55. Gallo, G. and Sandi, C., “Adjacent Extreme Flows and Application to Min Concave Cost Flow Problems,” Networks, Vol. 9, pp. 95-121 (1979).
56. Gallo, G., Sandi C. and Sodini, C., “An Algorithm for the Min Concave Cost Flow Problem,” European Journal of Operation Research, Vol. 4, pp. 248-255 (1980).
57. Glover, F., “Tabu Search, Part I,” ORSA Journal on Computing Vol. 1, No. 3, pp.190-206 (1989).
58. Glover, F., “Tabu Search- Part II,” ORSA Journal on Computing, Vol. 2, No. 1, pp. 4-32 (1990).
59. Glover, F. and Laguna, M., “Tabu Search, Kluwer Academic Publishers,” Massachusetts (1997).
60. Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley, Reading MA (1989).
61. Golden, B. L. and Skiscim, C. C., “Using Stimulated Annealing to Solve Routing and Location Problems,” Naval Research Logistic Quarterly, Vol. 33, pp. 261-279 (1986).
62. Gu, J. and Huang, X., “Efficient Local Search with Search Space Smoothing: A Case Study of the Traveling Salesman Problem (TSP),” IEEE Transaction on Systems, Man and Cybernetics, Vol. 24, pp. 728-739 (1994).
63. Guisewite, G. M. and Pardalos, P. M., “A Polynomial Time Solvable Concave Network Flow Problems,” Networks, Vol. 23, pp. 143-147 (1993).
64. Hall, R. W., “Direct Versus Terminal Freight Routing on Network with Concave Costs,” GMR-4517, Transportation Research Dept., GM Research Laboratories (1983).
65. Hansen, P. and Mladenovic, N., “Variable Neighborhood Search,” Computers and Operations Research, Vol. 24, pp. 1097-1100 (2007).
66. Holland, J.H., “Adaptation in Natural and Artificial System,” University of Michigan Press (1975).
67. Hu, N.,”Tabu Search Method With Random Moves for Globally Optimal Design,” International Journal for Numerical Methods in Engineering, Vol. 35, pp. 1055–1070 (1992).
68. Jordan, W. C., “Scale Economies on Multi-Commodity Networks,” GMR-5579, Operating Systems Research Dept., GM Research Laboratories (1986).
69. Kennedy, J., Eberhart, R.C. and Shi, Y., “Swarm Intelligence,” Morgan Kaufmann division of Academin Press (2001).
70. Kennedy, J. and Spears, W., “Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator,” In IEEE World Congress on Computational Intelligence, pp. 74–77 (1998).
71. Kershenbaum, A., “When Genetic Algorithms Work Best,” INFORMS Journal of Computing, Vol. 9, No. 3, pp.253-254 (1997).
72. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M.P., “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671-680 (1983).
73. Kuhn, H. W. and Baumol, W. J., “An Approximate Algorithm for the Fixed-Charge Transportation Problem,” Naval Res. Logistics Quarterly, Vol. 9, pp. 1-16 (1962).
74. Kuntz, P. and Snyers, D., “Emergent Colonization and Graph Partitioning,” International Conference on Simulation of Adaptive Behaviour: From Animals to Animats, pp. 494-500 (1994).
75. Larsson, T., Migdalas, A. and Ronnqvist, M., “A Lagrangian Heuristic for the Capacitated Concave Minimum Cost Network Flow Problem,” European Journal of Operational Research, Vol. 78, pp. 116-129 (1994).
76. Liang, Y.C. and Chen, Y.C., “Redundancy Allocation of Series-Parallel Systems Using a Variable Neighborhood Search Algorithm,” Reliability Engineering and System Safety, pp. 323-331(2007).
77. Maniezzo, V. and A. Colorni, “The Ant system applied to the Quadratic Assignment Problem,” IEEE Trans. Knowledge and Data Engineering, Vol. 5, pp. 769-778 (1999).
78. Michael R. Garey and David S. Johnson., “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W.H.Freeman and Company (1979).
79. N. Hu, “Tabu Search Method with Random Moves for Globally Optimal Design,” Int. J: Num. Meth. Engineering, vol. 35, pp. 1055-1070 (1992).
80. Nourie, F. J. and Guder, F., “A Restricted-Entry Method for a Transportation Problem with Piecewise-Linear Concave Cost,” Computer and Operations Research, Vol. 21, pp. 723-733 (1994).
81. Osman, I. H. and Kelly, J. P., “Meta-Heuristics: An Overview,” Meta-Heuristics: Theory and Applications, Kluwer Academic Publishers, Boston, London, Dordrecht, pp. 1-21 (1996).
82. Palmer, C. C. and Kershenbaum, A., “Representing Trees in Genetic Algorithms,” IEEE Conference on Evolutionary Computation, Vol. 1, pp. 379-384 (1994).
83. Powell, W. B, “A Review of Sensitivity Results for Linear Networks and a New Approximation to Reduce the Effects of Degeneracy,” Transportation Science, Vol. 26, No. 3, pp. 230-245 (1992).
84. Rech, P. and Barton, L. G., “A Non-Convex Transportation Algorithm,” Applications of Mathematical Programming Techniques, E. M. Beale, ed. (1970).
85. Reeves, C. R., “Improving the Efficiency of Tabu Search for Machine Sequencing Problems,” Journal of the Operation Research Society, Vol. 44, No. 4, pp. 375-382 (1994).
86. Reeves, C. R., “Genetic Algorithms for the Operations Researcher,” INFORMS J on Computing, Vol. 9, pp. 231-250 (1997).
87. Robuste, F., Daganzo, C. F. and Souleyrette, R., “Implementing Vehicle Routing Models,” Transportation Research, Vol. 24B, No. 4, pp. 263-286 (1990).
88. Salerno, J., Sinton, S. and Rahmar-Samii, Y., “Particle Swarm, Genetic Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn Antenna,” IEEE Antennas and Propagation Society, AP-S International Symposium, pp. 314-317 (1997).
89. Sheffi, M. J., Urban Transportation Networks:Equilibrium Analysis with Mathematical Programming Methods, Prentical-Hall (1984).
90. Shi, Y. and Eberhart, R. C. “A Modified Particle Swarm Optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73. IEEE Press, Piscataway, NJ (1998a).
91. Shi, Y. and Eberhart, R. C. “Parameter Selection in Particle Swarm Optimization,” Evolutionary Programming, Vol. 7, Proc. EP 98, pp. 591-600. Springer-Verlag, New York (1998b).
92. Suwan, R. and Sawased, T., “Link Capacity Assignment in Packet- Switched Networks: The Case of Piecewise Linear Concave Cost Function,” IEICE Trans. Commun., Vol. E82-B, No. 10 (1999).
93. Taguhi, T., Ida, K. and Gen, M., “A Genetic Algorithm for Optimal Flow Assignment in Computer Network,” Computers and Industrial Engineering, Vol. 35, pp. 535-538 (1998).
94. Thach, P. T., “A Decomposition Method Using A Pricing Mechanism for Min Concave Cost Flow Problems With a Hierarchical Structure,” Mathematical Programming, Vol. 53, pp. 339-359 (1992).
95. Yaged, B., “Minimum Cost Routing for Static Network Models,” Networks, Vol. 1, pp 139-172 (1971).
96. Yan, S. and Luo, S. C., “A Tabu Search-based Algorithm for Concave Cost Transportation Network Problems,” Journal of the Chinese Institute of Engineers, Vol. 21, pp. 327-335 (1998).
97. Yan, S. and Luo, S. C., “Probabilistic Local Search Algorithms for Concave Cost Transportation Network Problems,” European Journal of Operational Research, Vol. 117, pp. 511-521 (1999).
98. Yan, S., Juang, D. H., Chen, C. R. and Lai, W. S., “Global and Local Search Algorithms for Concave Cost Transshipment Problems,” Journal of Global Optimization, Vol. 33, No. 1, pp. 123 – 156 (2004).
99. Yan, S. and Young, H. F., “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight Scheduling,” Transportation Research, Vol. 30A, pp. 379-398 (1996).
100. Zangwill, W. I., “Minimum Concave Cost Flows in Certain Networks,” Management Science, Vol. 14, pp. 429-450 (1968).
101. Geem, Z. W., Tseng, C. L. and Park, Y., “Harmony Search for Generalized Orienteering Problem: Best Touring in China,” Springer-Verlag Berlin Heidelberg, pp. 741-750 (2005).
102. Geem, Z. W. and Kim, J. H., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, pp. 60-68 (2001).
103. Geem, Z. W. and Lee, K. S., “A New Meta-Heuristic Algorithm For Continuous Engineering Optimization: Harmony Search Theory And Practice,” Comput. Methods Appl. Mech. Engrg., pp. 3902-3933 (2004).
104. Geem, Z. W., Lee, K. S., Lee, S. H. and Bae, K. W., “The Harmony Search Heuristic Algorithm For Discrete Structural Optimization,” Engineering Optimization, Vol. 37, No. 7, pp. 663-684 (2005). |