博碩士論文 88443003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.218.190.118
姓名 林萍珍(Ping-Chen Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 智慧型多值企業價值評估模型: 以模糊遺傳程式規劃為基礎
(Multi-Valued Stock Valuation Based on FuzzyGP)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 企業價值評估是評估企業的真實價值, 有效的價值評估機制可提昇企業經營績效進而創造投資人的財富。
一般評估模型如資產價值法、淨值折現法、市場乘數法、選擇權定價法, 因缺乏堅實的理論基礎,
至今仍存在一些爭議。 此外, 財務資訊含有較多的雜訊與不確定性,
傳統數學與財務模型存在許多的假設前題與限制, 因此,
引進新的金融創新技術是不可或缺的, 人工智慧中的柔性計算技術於複雜求解問題的優越性正以改善此一缺點。
企業價值不易評估, 極可能是它並非是明確值, 而是一個模糊區間值,
而模糊理論的特性是在資訊充滿不確定性時, 可依其隸屬程度辨識模糊事物的輕重多寡;
另一原因可能是財務評估模型假設有一固定形式函數存在, 這些函數通常是變數的線性組合,
遺傳程式規劃依其非線性的最佳化能力, 能在廣大的求解空間搜尋出最適的組合解。
因此, 本研究的目的是提出『模糊遺傳程式規劃』, 作為建構企業價值評估模型新技術,
期望能有系統性與自動化建構新的評估模型, 以解決資訊非結構性與不確定性的問題。換言之,
新模型可以評估出企業真實價值的合理區間而非單點股價。
另外, 本研究以模糊可能分佈 (Fuzzy Possibility Distribution)為基礎解決投資與資產組合的交易策略。
而且此評估模型將是從大量的非結構性財務資料中發掘出一個收斂到最適的評估模型與最佳的資產配置交易策略。
為要驗證新理論模型的可行性與合理性, 本研究研究方法分成研究模型運作流程與研究設計兩部份描述。
模型運作流程部份分為過濾流程、抽樣流程以及模模糊遺傳程式規劃之評估流程。
過濾流程要從資料庫中處理缺值與空值; 抽樣流程是從母體中抽出符合實驗條件的變數與樣本。
模模糊遺傳程式規劃之評估流程是以遺傳程式規劃技術為基礎, 將染色體模糊化協助發掘企業真實價值。
此流程主要目標搜尋企業價值的評估規則, 藉遺傳程式規劃做選擇,
交配與突變機制不斷演化出新族群, 最後搜尋出最佳的規則組合, 此即為智慧型的評估模型,
做為評估企業真實價值的準則。本研究提出模糊樹混合交配法以改善個體不易收斂的問題。
遺傳程式規劃兩項重要工作是個別染色體節點編碼與評估函數設計,
模糊化的節點是評估的組成元素, 即輸入變數。評估函數可說是個體遺傳演化的環境,
若一演化世代愈能符合評估函數的要求, 便表示此個體愈能適應環境,
本研究之評估函數設計以報酬率最大與風險最小並重演化出更優良的子代。
本研究貢獻包括: 第一, 建構新的智慧型企業價值評估「理論模型」, 釐清部份既有模型的困境與盲點。
第二, 提出企業價值合理區間的觀念, 突破現有評估模型所解釋的企業價值均為單一股價的思維,
企業的真實價值或許是模糊多值 (Multi-Valued)而非單值 (Single-Valued),
合理解釋資本市場充滿不確定性的模糊現象。
第三, 提出模糊樹混合交配的方法, 以改善遺傳程式規劃不易收斂的問題;
交配的另一問題是交配舊基因, 模糊樹混合交配法交配後會產生新的基因。
第四, 梯形模糊數適合多值的企業價值評估, 並導引出自然的投資組合之資產配置交易策略,
協助證券分析師或投資人在做決策一套兼具擇股與擇時的智慧型證券決策支援系統。
第五, 提供金融機構一套有用的授信決策支援系統。本研究建構之智慧型企業價值評估模型,
將以資訊科技的透明化, 部份解決授信人員操守問題; 且模型將有效幫助授信者過濾雜訊,
能儘早發現危機訊號以謀對策, 因而避免誤判放款對象與額度, 而發生鉅額呆帳損失;
亦可應用於其他財務領域如企業購併、上市上櫃承銷價訂定、銀行團接管等課題。
摘要(英) Stock valuation plays an important role in stock selection for fundamental investors. The Efficient Market Hypothesis (EMH) emphasizes that the intrinsic value of a stock will be reflected by its market price. Previous studies on stock valuation estimate a stock’’s value as a single-valued number. Different models generate different estimates on the same stock. This may imply that the value of a stock should be multi-valued rather than single-valued. This study develops an intelligent stock valuation model to produce a multi-valued price for a stock by generalizing genetic programming to Fuzzy genetic programming. Since the stock value is estimated by a Fuzzy expression tree which calculates to a trapezoidal Fuzzy number, the stock value becomes multi-valued. In addition, the resulting trapezoidal Fuzzy stock value induces a natural trading strategy which can readily be executed and evaluated.
關鍵字(中) ★ 遺傳程式規劃
★ 模糊數
★ 多值
★ 企業價值評估
關鍵字(英) ★ Genetic Programming
★ Fuzzy Number
★ Multi-Value
★ Intrinsic Value
★ Stock Valuation
論文目次 1 緒論 1
1.1 研究背景 2
1.2 研究動機 3
1.3 研究目的 5
1.4 研究重要性 6
1.5 研究步驟 7
1.6 論文章節架構 8
2 企業價值評估理論 11
2.1 企業價值的意義 11
2.2 企業價值理論模型 12
2.3 企業價值評估模型理論 15
2.3.1 資產價值法 15
2.3.2 淨值折現法 16
2.3.3 價格乘數法 17
2.3.4 選擇權定價法 19
2.4 績效評估 19
2.5 企業價值相關研究 20
2.6 傳統評估方法的問題 23
3 模糊理論與遺傳程式規劃 25
3.1 模糊理論 25
3.1.1 模糊集合 25
3.1.2 模糊數 27
3.1.3 模糊決策 29
3.1.4 模糊理論於財務相關研究 31
3.2 遺傳程式規劃 33
3.2.1 遺傳演算法的基本概念 34
3.2.2 遺傳程式規劃的運作流程 36
3.2.3 遺傳程式規劃技術上面臨的困難 38
3.2.4 遺傳程式規劃於財務相關研究 40
3.3 模糊遺傳程式規劃相關研究 44
4 研究模型 45
4.1 理論模型 45
4.2 研究模型 47
4.2.1 過濾流程 49
4.2.2 抽樣流程 49
4.2.3 模糊遺傳程式規劃為基礎的評估流程 49
4.2.4 模糊遺傳程式規劃樹的表示 50
4.3 細步實作 50
4.3.1 編碼 51
4.3.2 模糊數的型態 53
4.3.3 模糊數的運算 53
4.3.4 模糊樹混合交配法 55
4.3.5 評估函數 60
4.3.6 交易策略 60
4.3.7 系統參數 64
5 實驗分析與討論 66
5.1 樣本資料選取與資料來源 66
5.2 變數的操作性定義 67
5.3 實驗環境與工具 70
5.4 實驗設計 70
5.4.1 實驗期間 70
5.4.2 實驗假設 71
5.4.3 實驗設計 72
5.5 實驗結果與分析 72
5.5.1 訓練期間長短 76
5.5.2 移動視窗 80
5.5.3 效能分析 84
5.5.4 投資報酬率評比 89
6 結論與建議 94
6.1 研究發現 95
6.2 研究貢獻 97
6.3 研究限制 98
6.4 未來研究方向 99
參考文獻 101
參考文獻 1. 吳榮銘(2000),《企業評價個案實證分析》,台北:智勝文化。
2. 林文修(2000),"演化式類神經網路為基底的企業危機診斷模型:智慧資本之應用",國立申央大學資訊管理系。
3. 林炯垚(1999),《企業評價投資銀行實務》,台北:禾豐企業叢展文教基金會。
4. 邱建欽(2000),"台灣地區上市公司股票評價模之研究-式以機電業為例",國立政治大學企業管理系。
5. 洪美慧(2000),"台灣地區上市公司股票評價模之研究-式以電器電纜業為例",國立政治大學企業管理系。
6. 陳奉珊(1998),"企業評價模型有效性之實證研究",國立政治大學財務管理系。
7. 陳怡如(1997),"金融業上市公司股票評價模式之研究",國立政治大學企業管理系。
8. 陳怡倫(1997),"台灣高科技產業上市公司股票評價模式之研究",國立政治大學企業管理系。
9. 陳俐君(1991),"股票價格預測模式之績效評估-以台灣上市公司為例",淡江大學金融系。
10. 陳隆麒(1993),《現代財務管理-理論與應用第二版》台北:華泰。
11. 郭敏華(1999),《企業分析與評價-財務報表分析之應用》台北:華泰文化。
12. 黃德舜(1998),《企業財務分析-企業價值的創造及評估》台北:華泰文化。
13. 蔣欣孜(1999),"台灣地區半導體業上市公司股票評價之研究",國立政治大學企業管理系。
14. 謝劍平(1998),《現代投資學》,台北:智勝文化。
15. 涂宏任(2000),"經濟附加價值解釋科技產業經營績效能力之研究",國立中正大學企業管理系。
16. Allen, F. and R. Karjalainen (1999a), “Using Genetic Algorithms to Find Technical Trading Rules", Journal of Financial Economics, 51, 245-271.
17. Allen, F. and R. Karjalainen (1999b), “Using Genetic Programming to Find Technical Trading Rules", Journal of Financial Economics, 51, 245-271.
18. Banzhaf, W., J. R. Koza, C. Ryan, L. Spector, and C. Jacob (2000), “Genetic Programming", IEEE Intelligence Systems, 15, 74-84.
19. Basu, S. (1977), “Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Markets Hypothesis", Journal of Finance, 32, 663-682.
20. Bebchuk, L. A. (2000), “Using Option to Divide Value in Corporate Bankruptcy", .
21. Bhattacharyya, S., O. V. Pictet, and G. Zumbach (1998), “Representational Semantics for Genetic Programming-Based Learning in High Frequency Financial Data", in Proceedings of the Third Annual Conference on Genetic Programming 1998, 11-16.
22. Bhattacharyya, S., O. V. Pictet, and G. Zumbach (2002), “Knowledge-Intensive Genetic Discover in Foreign Exchange Markets", IEEE Transaction on Evolutionary Computation, 6, 169-181.
23. Block, F. E. (1995), “A Study of Price to Book Relationship", Financial Analysts Journal, 63-73.
24. Carlos, C., A. Enrique, and M. T. Jose (1996), “Evolutionary Design of Fuzzy Logic Controllers", in Proceedings of the 1996 IEEE International Symposium on Intelligent Control Dearborn, 127-132.
25. Carlsson, C., R. Fuller, and P. Majlender (2002), “A Possibilistic Approach to Selecting Portfolios with Highest Utility Score", Fuzzy Sets and Systems, 131, 13-21.
26. Chen, J. S., S. X. Deng, and P. C. Lin (2000), “Generation of Trading Strategies Using Genetic Algorithms", in Proceedings of the 5th Joint Conference on Information Sciences (First International Workshop on Computational Intelligence in Economics and Finance), 921-924, Atlantic City.
27. Chen, J. S. and P. C. Lin (2002), “An Intelligent Financial Ratio Seleciton Mechanism for Earning Forecast", Journal of The Operation Research Society of Japan, 45.
28. Chen, J. S. and P. C. Lin (2003), “A GA-Based Data Mining Approach for Corporate Failure Decision", in International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria: CIMCA.
29. Chen, L. H. and T. W. Chiou (1999), “A Fuzzy Credit-Rating Approach for Commercial Loans: A Taiwan Case", The International Journal of Management Science, 27, 407-419.
30. Chen, S. H., W. C. Lee, and C. H. Yeh (1999), “Hedging Derivative Securities with Genetic Programming", International Journal of Intelligent Systems in Accounting, Finance and Management, 8, 237-251.
31. Chen, S. H. and C. H. Yeh (1997), “Toward a Computable Approach to The Efficient Market Hypothesis: An Application of Genetic Programming", Journal of Economic Dynamics and Control, 21, 1043-1063.
32. Chen, S. H. and C. H. Yeh (1999), “Genetic Programming in the Agent-Based Arti¯cial Stock Market", in Proceedings of the 1999 Congress on Evolutionary Computation (CEC'99), 834-841, IEEE Press.
33. Chidambaran, N. K., C. W. J. Lee, and J. R. Trigueros (1998), “Adapting Black-Scholes to a Non-Black-Scholes Environment", in Proceedings of the IEEE/IAFE/INFORMS 1998 Congress on Computational Intelligence for Financial Engineering (CIFEr), 29-31.
34. Christopher, J. N. and A. W. Paul (2001), “Technical Analysis and Central Bank Intervention", Journal of International Money and Finance, 20, 949-970.
35. Dempster, M. A. H., T. W. Payne, Y. Romahi, and G. W. P. Thompson (2001), “Computational Learning Techniques for Intraday FX Trading Using Popular Technical Indicators", IEEE Transaction on Neural Networks, 12, 744-754.
36. Douglas, A. A. and J. C. B. Helio (2000), “Symbolic Regression Via Genetic Programming", in Neural Network 2000 Proceedings Sixty Brazillia Symposium, 173-178.
37. Dourra, H. and P. Siy (2002), “Investment Using Technical Analysis and Fuzzy Logic", Fuzzy Sets and Systems, 127, 221-240.
38. Edmonds, A. N. (1995), “Genetic Programming of Fuzzy Logic Production Rules", in Proceedings of IEEE International Conference on Evolutionary Computation 1995, 765-770.
39. Fama, E. F. and K. R. French (1995), “Size and Book-to-Market Factors in Earnings and Returns", Journal of Finance, 50, 131-155.
40. Feuring, T., W. Golubski, and M. Gassmann (2000), “Fuzzy Regression: A Genetic Programming Approach", in Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 349-352.
41. Francis, J., P. Olsson, and D. R. Oswald (2000), “Comparing the Accuracy and Explainability of Dividend, Free Cash Flow, and Abnormal Earnings Equity Value Estimates", Journal of Accounting Research, 38(Spring), 45-70.
42. Frankel, R. and C. M. Lee (1998), “Accounting Valuation, Market Expectation, and Coss-Sectional Stock Returns", Journal of Accounting and Economics, 25, 283-319.
43. Freitag, M. N. and N. J. Hopper (1999), “AppGP: An Alternative Structural Representation for GP", in Proceedings of the 1999 Congress on Evolotionary Computation, 1377-1383, IEEE Press.
44. Guo, C. H. (1995), The Option-Pricing and Valuation of Net Worth: An Examination of U.S. Commercial Banks, Washington D. C.
45. Henry, O. and B. Graham (1986), “Net Current Assest Values: A Performance Update", Financial Analysts Journal, 40-47.
46. Heywood, M. I. and A. N. Zincir-Heywood (2002), “Dynamic Page Based Crossover in Linear Genetic Programming", IEEE Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics, 32, 380-388.
47. Heywood, M. J. and A. N. Zincir-Heywood (2000), “Page-Based Linear Genetic Programming", in IEEE International Conference on Systems, Man, and Cybernetics, 3823 -3828.
48. Holland, J. H. (1975), Adapation in Natural and Artificial Systems, Michigan Press.
49. Jaffe, J., D. B. Keim, and R. Wester¯eld (1989), “Earnings Yields, Market Values, and Stock Returns", Journal of Finance, 135-148.
50. Jin, L. and E. P. K. Tsang (1999), “Investment Decision Making Using FGP: A Case Study", in Proceedings of the 1999 Congress on Evolutionary Computation, 12531259.
51. Kaplan, S. N. and R. S. Ruback (1995), “The Valuation of Cash Flow Forecasts: An Empirical Analysis", The Journal of Finance, 2(September), 1059-1093.
52. Keber, C. and M. G. Schuster (2001), “Evolutionary Computation and the Vega Risk of American Put Options", IEEE Transaction on Neural Networks, 4, 704-714.
53. Kingham, M. and M. Mohammadian (1996), “Financial Modelling and Prediction of Interest Rate Using Fuzzy Logic and Genetic Algorithms", in Proceedings of Autralian New Zealand Conference on Intelligent Information Systems 1996, 233-236.
54. Kojima, F. and N. Kubota (2000), “Quantitative Nondestructive Evaluation of Material Defect Using GP-Based Fuzzy Inference System", in Proceedings of Industial Eloctronics Society 2000 on 26th Annual Conference of the IEEE, 2519-2524.
55. Kosaka, M., H. Mizuno, and T. Sasaki (1991), “Applications of Fuzzy Logic and Neural Network to Securities Trading Decision Support System", in Proceedings of IEEE International Conference on System, Man and Cybernetics 1991 Decision Aiding for Complex Systems, 1913-1918.
56. Koza, J. (1992), Genetic Programming, Cambridge, Mass.: MIT Press.
57. Les, M. H. and J. D. A. Donna (1995), “The GA-P: A Genetic Algorithm and Genetic Programming Hybrid", IEEE Expert, 11-15.
58. Lin, P. C. and J. S. Chen (1998), “An Application of Genetic Algorithms on User-Oriented Portfolio Selection", in International Conference of Information Management ICIM 1998, 7-16, TaoYuan Taiwan.
59. Lin, P. C. and J. S. Chen (2002), “Multi-Objective Genetic Algorithms on Financial Ratio Selection for Earning Forecast", in Soft Computing in Industry - Recent Applications, 789-796, Springer.
60. Lin, W. S., J. S. Chen, and P. C. Lin (1999), “A Study on Investment Decision Making Model: Genetic Algorithms Approach", in Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, 1049-1054, Tokyo, Japan.
61. Makoto, I. and I. Hitoshi (2002), “Island Model GP with Immigrants Aging and Depth-Dependent Crossover", in Proceeding of IEEE 2002 International Conference on Evolutionary Computation, 267-272.
62. Markose, S., E. Tsang, E. Hakan, and A. Salhi (2001), “Evolutionary Arbitrage for FTSE-100 Index Options and Futures", in Proceedings of the 2001 Congress on Evolutionary Computation, 275-282.
63. Markowitz, H. (1952), “Portfolio Selection", Journal of Finance, 7, 77-91.
64. Muhammad, A. and G. A. King (1997), “Foreign Exchange Market Forecasting Using Evolutionary Fuzzy Networks", in Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering, 213-219.
65. Obyrne, S. F. (1996), “EVA and Market Value", Bank of America Journal of Applied Corporate Finance, 9, 116-125.
66. Palepu, K. G., V. L. Bernard, and P. M. Healy (1997), Introduction to Business Analysis & Valution, Sourth Western Inc.
67. Penman, S. H. (1998), “A Comparison of Dividend, Cash Flow, and Earnings Approaches to Equity Valuation", American Economic Review, 58(March), 1-17.
68. Quigg, L. (1995), “Empirical Testing of Real Option-Pricing Models", Journal of Finance, 621-640.
69. Reinganum, M. R. (1981), “Misspeci¯cation of Capital Asset Pricing: Empirical Anomalies Based on Earnings, Yields and Market Values", Journal of Financial Economics, 19-46.
70. Rizzi, L., F. Bazzana, Nl Kasabov, and M. Fedrizzi (2003), “Simulation of ECB Decisions and Forecast of Short Term Euro Rate with an Adaptive Fuzzy Expert System", European Journal of Operational Research, 145, 363-381.
71. Sanchez, L. (2000), “Interval-Valued GA-P Algorithms", IEEE Transaction on Evolutionary Computation, 4, 64-72.
72. Shin, T. and I. Han (2000), “Optimal Signal Multi-Resolution by Genetic Algorithms to Support Arti¯cial Neural Networks for Exchange Rate Forecasting", Expert Systems with Applications, 18, 257-269.
73. Svangard, N. and P. Nordin (2002), “Evolving Short-Term Trading Strategies Using Genetic Programming", in Proceedings of The 2002 Congress on Evolutionary Computation, 2006-2010.
74. Takuya, ITO. (1998), “Depth-Dependent Crossover for Genetic Programming", in Proceedings of IEEE 1998 International Conference on Evolutionary Computation, 775-780.
75. Tanaka, H., P. Guo, and I. B. Turksen (2000), “Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions", Fuzzy Sets and Systems, 111, 387-397.
76. Tanaka, H., H. Nakayama, and A. Yanagimoto (1995), “Possibility Portfolio Selection", in Proceedings of 1995 IEEE International Conference International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems, 813-818.
77. Terrio, M. D. and M. I. Heywood (2002), “Directing Crossover for Reduction of Bloat in GP", in IEEE CCECE 2002 Canadian Conference on Electrical and Computer Engineering, 1111 -1115.
78. Timothy, J. R. (1995), Fuzzy Logic with Engineering Applications, McGRAW-HILL.
79. Trigueros, J. (1997), “A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Genetic Regression", in Proceedings of the IEEE/IAFE 1997 Conference on Computational Intelligence for Financial Engineering, 1-7, New York: IEEE Press.
80. Tuller, L. W. (1994), Small Business Valuation Book, Massachusetts: Bob Adams, Inc.
81. Una-May, O. and O. Franz (1995), “Hybridized Crossover-Based Search Techniques for Program Discovery", in IEEE 1995 International Conference on Evolutionary Computation, 575-582.
82. Varetto, F. (1998), “Genetic Algorithms Applications in The Analysis of Insolvency Risk", Journal of Banking & Finance, 22, 1421-1439.
83. Vrainard, W. C., M. D. Shapiro, and J. B. Shoven (1900), “Fundamental Value and Market Value", Journal of Finance, 1, 1-1.
84. Wallrafen, J., P. Protzel, and H. Popp (1996), “Genetically Optimized Neural Netwrok Classi¯ers for Bankruptcy Prediction", in Proceedings of the 29th Annual Hawaii International Conference of System Sciinces, 419-426.
85. Wilson, G. C. and M. I. Heywood (2000), “Crossover Context in Page-Based Linear Genetic Programming", in IEEE 2002 Canadian Conference on Electrical and Computer Engineering, 809-814.
86. Xia, Y., B. Liu, S. Wang, and K. K. Lai (2000), “A Model for Portfolio Selection with Order of Expected Returns", Computers & Operations Research, 27, 409-422.
87. Yoshida, Y. (2003), “The Valuation of European Options in Uncertain Environment", European Journal of Operational Research, 145, 221-229.
88. Zadeh, L. A. (1978), “Fuzzy Sets as a Basis of a Theory of Possibility", Fuzzy Sets and Systems, 1, 3-28.
指導教授 陳彥良、陳稼興
(Y. L. Chen、J. S. Chen)
審核日期 2004-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明