博碩士論文 963202015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.119.167.189
姓名 洪紹勛(Shao-Hsun Hung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 梁構件之振動式快速損傷診斷技術
(A vibrational type fast damage diagnosis technique for beam element)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 既有橋梁的損傷診斷是近期國內外工程界所關切的,其中如何能
夠快速又準確的進行橋梁損傷診斷,更是現在許多研究追求的目標,
本論文以量測結構自然頻率配合破壞力學及旋轉彈簧的概念進行損
傷位置與劣化程度診斷之計算,相較於傳統以載重實驗進行損傷診
斷,橋梁自然頻率的量測較為經濟與便捷,因此可達到快速損傷診斷
之目的。
本論文首先結合Anifantis 所提出的破壞力學及旋轉彈簧的損傷
模型概念,再來進一步的延伸至Liang 提出的損傷指標的計算。文中
搭配SAP2000 的數值模擬以及實際的鋁梁敲擊實驗進行此損傷診斷
方法的驗證,實驗中的自然頻率是藉著頻率域分解法(FDD)去的計算
由互易定理量測到的加速度訊號所得到的。最後更進一步的探討以理
論的模態振形及實際量測到的模態振形所計算的損傷位置與劣化程
度的結果,以及損傷產生前後可能面臨到的系統邊界條件改變之問
題。
摘要(英) Damage assessment of existing bridge is currently concerned by most engineers in the world, especially those techniques with accuracy and efficiency. In this thesis, a fast damage diagnosis technique by means of measuring natural frequency and modal shapes is proposed. Compared with the damage diagnosis process by loading test, the vibrational type testing method is more economical and efficient.
The rotational spring modal for defect based on fracture energy theory proposed by Anifantis (1983) is applied into the damage index calculation method developed by Liang (1992) to form the damage diagnosis process of this thesis.
The accuracy and reasonableness of this newly proposed technique on detecting damage location and severity are verified by numerical simulations and laboratory tests on beams with various types of damage state. Those natural frequencies and modal shapes of structures are obtained from the reciprocal theorem of elastodynamics and the frequency domain decomposition (FDD) method. Some signal processing techniques on field measured data and the adjustment of boundary conditions in the structure modal are also addressed.
關鍵字(中) ★ FDD
★ 破壞力學
★ 損傷診斷
★ 旋轉彈簧
★ 損傷指標
★ 自然頻率
★ 模態振形
關鍵字(英) ★ fracture dynamics
★ frequency domain decomposition
★ rotational spring
★ damage index
★ damage diagnosis
論文目次 摘要··················································· I
ABSTRACT ············································ II
誌謝··················································· III
目錄··················································· V
表目錄················································· VII
圖目錄················································· IX
第一章 緒論············································ 1
1.1 引言············································ 1
1.2 研究動機········································ 3
1.3 論文大綱········································ 4
第二章 文獻回顧········································ 5
第三章 損傷診斷的原理 ································· 10
3.1 理論背景········································ 10
3.2 旋轉彈簧勁度k 之推導 ··························· 15
3.3 損傷指標 ······································· 19
3.4 損傷位置(β )旋轉彈簧勁度(k)關係之推導··········· 23
3.5 進一步的探測損傷位置及深度 ····················· 27
3.6 非簡支梁的損傷診斷計算·························· 28
3.7 計算範例········································ 28
第四章 數值模擬與實際實驗······························ 41
4.1 實驗方法理論···································· 41
4.2 實驗試體········································ 44
4.3 實驗設備 ······································· 48
4.4 數值模擬 ······································· 54
4.4.1數值模擬分析結果計算 ······················ 58
4.4.2損傷位置深度及深度計算結果探討 ············ 74
4.5 實驗室實驗 ····································· 77
4.5.1 力脈衝訊號之處理 ························· 77
4.5.2 計算傳遞函數H(ω ) ························ 80
4.5.3 以奇異值分解得自然頻率及模態·············· 81
4.6 計算實驗結果···································· 97
4.6.1 直接以實驗量測結果進行計算················ 97
4.6.2 搭配數值模型之模擬損傷前的自然頻率進行計算100
4.6.3 以實驗量得之模態進行計算················ 105
第五章 結論與建議····································· 116
參考文獻·············································· 118
參考文獻 1. Lifshitz, J. M. and Rotem, A., ?§Determination of reinforcement unbonding of composites by a vibration technique,?? Journal of Composite Materials, Vol. 3, pp.412-423 (1969).
2. Adams, R. D. and Cawley, P., ?§A vibration technique for nondestructively assessing the integrity of structures,?? Journal of Mechanical Engineering Science, Vol. 20, pp93-100(1978).
3. Wang, W. and Zhang, A., ?§Sensitivity analysis in fault vibration diagnosis of structures??, in Proc.of 5th International Modal Analysis Conference, pp.496-501(1987).
4. Stubbs, N. and Osegueda, R., ?§Global damage detection in solids-experimental verification,?? Modal Analysis: The international journal of analytical and experimental modal analysis, Vol. 5, No.2, pp.81-97 (1990).
5. Doebling, S. W. and Farrar, C. R., ?§Effect of measurement statistics on the detection of damage in the Alamosa Canyon Bridge, ?§Proceeings 15th International Modal Analysis Conference, Orlando, FL, pp. 919-929(1997).
6. Salane, H. J. and Baldwin, J. W., ?§Identification of modal properties of bridges??, journal of structural engineering, ASCE, Vol. 116, No. 7, pp.2008-2021 (1990).
7. Gomes, A. J., Gomes, A. J. and Silva, J. M. M. E., ?§On the use of modal analysis for crack identification?? in Proceedings, 8th International modal analysis conference, Florida, 2, pp.1108-1115, (1990).
8. Ju, F. D. and Mimovich, M., ??Modal frequency method in diagnosis of fracture damage in structures" in proceedings,4th International modal analysis conference, Los Angeles, 2, pp.1168-1174 (1986).
9. West, W. M., ??Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen,?? in Proc. Air force conference, pp. 93-100(1984).
10. Fox, C. H. J., ??The location of defects in structures: a comparison of the use of natural frequency and mode shape data,?? in Proc. of the 10th International modal analysis conference, pp.522-528( 1992).
11. Pandey, A. K., Biswas, M. and Samman, M. M., ?§Damage detection from changes in curvature mode shapes,?? Journal of sound and vibration, Vol. 145, NO.2, pp.321-332(1991).
12. Chance, J., Tomlinson, G. R. and Worden, K., ??A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam,?? in Proc. Of the 12th international modal analysis conference, pp.778-785(1994).
13. Stubbs, N. and Kim, J. T., ??Damage localization in structures without baseline modal parameters,?? AIAA Journal, vol.34, No.8, pp.1644-1649(1996).
14. Kim, J. T., Ryu, Y. S., Cho, H. M. and Stubbs, N., ??Damage identification in beam type structures: frequency-based method vs mode shape-based methods,?? Engineering Structures, Vol. 23, pp.57-67(2003).
15. Chondras, T. G. and Dimarohonas, A. D., ?§Identification of cracks in welded joints of complex structures??, Journal of sound and vibration, Vol. 69, No. 4, pp.531-538(1980).
16. Anifantis N. and Dimarogonas A. D., ?§Stability of columns with a single crack subjected to follower and vertical loads??, International Journal of Solids Structures, Vol. 19, No. 3, pp.281-291(1983).
17. Ostachowicz, W. M. and Krawczuk, M., ??Analysis of the effect of cracks on the natural frequencies of a cantilever beam??, Journal of sound and vibration, Vol. 150, No. 2, pp.191-201(1991).
18. Liang, R.Y., Hu, J. and Choy, F. K., ??Quantitative NDE technique for assessing damage in beam structures??, J Engng Mech, ASCE, Vol. 118, No. 7, pp.1468?V87(1992).
19. Patil, D. P. and Maiti, S. K., ?? Detection of multiple cracks using frequency measurements??, Engineering Fracture Mechanics Vol. 70, pp.1553?V1572(2003).
20. Patil, D. P. and Maiti, S. K., ?? Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements??, Journal of Sound and Vibration, Vol. 281, pp. 439?V451(2005).
21. Aktan, A. E., ?§Modal testing for structural identification and condition assessment of constructed of constructed facilities,?? in Proc. Of 12th international modal analysis conference, pp.462-468(1994).
22. Pandey, A. K. and Biswas, M., ?§Damage detection in structures using changes in flexibility,?? Journal of sound and vibration, Vol. 169, No. 1, pp.33-17(1994).
23. Mayer, R. L., ??An experimental algorithm for detecting damage applied to the I-40 bridge over the Rio Grande,?? in Proc.13th International modal analysis conference, pp.219-225(1995).
24. Hertzberg, R. W., ??Deformation and Fracture Mechanics of Engineering Materials??, John Wiley and Sons, New York.(1996).
25. Tada, H., Paris, P. C. and Irwin, G. R., ?? The Stress Analysis of Cracks Handbook??, third ed, ASME Press, Professional Engineering Publishing, New York.(2000).
26. Hu, J. and Liang, R. Y., ?? An integrated approach to detection of cracks using vibration characteristics??, J Franklin Ins, Vol. 330, No. 5, pp.841?V853(1993).
27. Wang, Chung-Yue., Che-Hau Chiang. and Chin-Kuo Huang., ?§Damage Assessment of Structure by Reciprocal Theorem of Elastodynamics and the Frequency Domain Decomposition Method,?? Proceedings of the 2nd Int. Conf. on Experimental Vibration Analysis for Civil Engineering Structures (EVACES??07), 24-26 October 2007, Porto, Portugal, edited by A. CHNHA & E. CAETANO, pp.283-284
28. 劉正偉,「梁構件系統之識別參數與損傷檢測之應用」國立中央大學土木研究所碩士論文,中壢,2004
29. 江哲豪,「頻率域分解方法在結構模態參數分析之應用」國立中央大學土木研究所碩士論文,中壢,2006
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明