博碩士論文 91423007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.225.254.81
姓名 楊慧如(Hui-Ru Yang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 在序列資料庫中挖掘多重時間間隔樣式
(Discovering multi-time-interval sequential patterns in sequence database)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 序列樣式的挖掘在許多應用扮演十分重要的角色,包括生物電腦研究、顧客行為分析及系統效能研究等等,但是一般的序列樣式挖掘很少考慮到時間間隔,一直到Chen, Jiang, and Ko 提出時間間隔樣式挖掘之後,我們發現只挖掘出兩兩項目之間的時間間隔是不夠的,必須找出所有項目之間的時間間隔的樣式才能幫助決策者得到詳細請足夠的支援,於是我們提出兩項演算法:MI-Apriori以及MI-PrefixSpan分別改自Apriori以及PrefixSpan演算法,其中MI-PrefixSpan的效率優於MI-Apriori,而scalablity的表現則相反。
摘要(英) Sequential pattern mining is of great importance in many applications including computational biology study, consumer behavior analysis, system performance analysis, etc. Recently, an extension of sequential patterns, called time-interval sequential patterns, is proposed by Chen, Jiang, and Ko, which not only reveals the order of items but also the time intervals between successive items. For example: having bought a laser printer, a customer returns to buy a scanner in three months and then a CD burner in six months. Although time-interval sequential patterns are useful in predicting when the customer would take the next step, it can not determine when the next k steps will be taken. Hence, we present two efficient algorithms, MI-Apriori and MI-PrefixSpan to solve this problem. The experimental results show that the MI-PrefixSpan algorithm is faster than the MI-Apriori algorithm but the MI-Apriori algorithm has a better scalability.
關鍵字(中) ★ 知識挖掘
★ 序列樣式
★ 時間間隔
★ 多重時間間隔
★ 資料挖礦
關鍵字(英) ★ Data mining
★ knowledge discovery
★ sequential patterns
★ multi time interval
★ time interval
論文目次 1. Introduction
2. Previous research and potential applications
3. Problem definition
4. Algorithms
5. Validation
6. Conclusion
7. References
參考文獻 Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of 1994 International Conference on Very Large Data Bases, 487–499.
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of 1995 International Conference on Data Engineering, 3–14.
Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866–883.
Chen, Yen-Liang; Chiang, Mei-Ching; Ko, Ming-Tat (2003). Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications. 25(3), 343-354.
Chen, Yen-Liang; Chen, Shih-Sheng; Hsu, Ping-Yu (2002). Mining hybrid sequential patterns and sequential rules. Information Systems, 27(5), 345-362, July, 2002.
Cowan, Adrian M. (2000). Data Mining in Finance: Advances in Relational and Hybrid Methods: Boris Kovalerchuk and Evgenii Vityaev (Eds.), Kluwer Academic Publishers, Norwell, Massachusetts, 2000, HB US $120, ISBN 0-7923-7804-0 . International Journal of Forecasting. 18(1), 155-156.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in databases: An overview. Cambridge, MA: AAAI/MIT press.
H. J. Loether and D. G. McTavish. (1993). Descriptive and Inferential Statistics: An Introduction. Allyn and Bacon.
Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3), 259 -289.
J. Han, W. Gong, and Y. Yin. (1998). Mining Segment-Wise Periodic Patterns in Time-Related Databases. Proc. of 1998 Int'l Conf. on Knowledge Discovery and Data Mining (KDD'98), 214-218, New York City, NY.
J. Han, G. Dong and Y. Yin. (1999) Efficient mining of partial periodic patterns in time series database In Proc. 1999 Int. Conf. Data Engineering (ICDE'99), Sydney.
J. Han. (1999). Data Mining. in J. Urban and P. Dasgupta (eds.). Encyclopedia of Distributed Computing , Kluwer Academic Publishers.
J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu. (2000). FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining (KDD'00). 355-359
J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, Proc. 2001 Int. Conf. on Data Engineering (ICDE'01)
J. Han. (2002). How Can Data Mining Help Bio-Data Analysis?, Proc. 2002 Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conf.)
J. Yang, P. Yu, W. Wang, and J. Han. (2002). Mining Long Sequential Patterns in a Noisy Environment. In Proc. of 2002 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'02), Madison, WI.
Lee, Anthony J.T.; Wang, Yao-Te. (2003). Efficient data mining for calling path
patterns in GSM networks . Information Systems, 28(8), 929-948.
Mannila, H., Toivonen, H., and Verkamo, A.I. (1995). Discovering frequent episodes in sequences. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD ’95). Montr´eal, Canada. 210–215.
Mannila, H. and Toivonen, H. (1996). Discovering generalized episodes using minimal occurrences. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD ’96). Portland, OR. 146–151.
M.-S. Chen, J.-S. Park and P. S. Yu. (1998). Efficient Data Mining for Path Traversal Patterns. IEEE Trans. on Knowledge and Data Engineering, 10(2), 209-221.
R. Srikant, R. Agrawal. (1996). Mining Sequential Patterns: Generalizations and Performance Improvements. In Proc. of the Fifth Int'l Conference on Extending Database Technology (EDBT), Avignon, France. Expanded version available as IBM Research Report RJ 9994.
Sherri K. Harms, Jitender Deogun, Tsegaye Tadesse. (2002). Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences. Lecture Notes in Artificial Intelligence, 2366(0), 0432.
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Ramasamy Uthurusamy Summary from the KDD-03 panel: data mining: the next 10 years. ACM SIGKDD Explorations Newsletter, 5(2), 191 - 196 .December, 2003
YJ. Yang, P. Yu, W. Wang, and J. Han. (2002). Mining Long Sequential Patterns in a Noisy Environment Proc. 2002 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'02), Madison, WI, June 2002
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2004-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明