博碩士論文 963202049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.188.223.120
姓名 鄭竹均(Chu-chun Cheng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋰鈉鉀離子在鹼質與粒料反應中的競逐行為研究
(Li Na K ion exile competitive conduct the research of reactivity on Alkali-aggregate reaction)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討三項主題:(1) Li+、Na+及K+與活性粒料粉體的反應行為、(2) Li+、Na+及K+與水泥水化產物的結合行為、及(3) Li+取代已結合於水泥水化產物或鹼矽膠體內之Na+及K+行為,以分析Li+抑制鹼-矽反應的機理。試驗粒料包括東河變質砂岩、Pyrex玻璃及矽砂,使用的鹼金屬化合物包括NaOH、KOH、LiOH.H2O及LiNO3。結果顯示,在Li+、Na+及K+與活性粉體反應研究方面,發現活性粉體浸泡含Na+及K+溶液時,浸泡時間增加,SiO2的溶出量、OH-的減少量及Na+、K+的減少量均會增加;但浸泡於含Li+溶液時,與浸泡含Na+及K+溶液比較,發現OH-減少量較多,SiO2溶出量低很多,而Li+的減少量較高,顯示Li化合物會直接與粒料中的活性矽反應,生成溶解度較低、不會吸水膨脹的物質。在Li+、Na+及K+與水泥水化結合研究方面,發現結合於水化產物的比例為Li+>Na+>K+,顯示實務上添加鋰化合物以抑制ASR膨脹時,需足量添加,否則可能會造成更大的膨脹,而添加LiNO3的結合比例會大於添加LiOH.H2O。在Li+取代結合於水泥水化產物內之Na+及K+能力研究方面,發現LiNO3較LiOH.H2O取代能力為佳,此外,Li+濃度愈高、浸泡時間愈久,則取代量愈多,顯示實務上已噴灑或浸泡的方法維修受ASR影響的構造物,可能會有效,但所需時間及效果仍待評估。
摘要(英) There are three primary objectives in this research. The first is to evaluate the affect of reaction of Li+, Na+, K+ to reactive aggregate powder. Second is to determine the combination of Li+, Na+, K+ in hydration product. The third is to evaluate the suppression function by assessing the reactivity in the utilization of lithium ion as a replacement in cment hydration products combination or ASR gel.
The materials used for the experiments are Ton-River aggregate, Pyrex glass and silica. In addition, alkali composition used include NaOH, KOH, LiOH. H2O and LiNO3.
The result shows that reaction of Li+, Na+, K+ affects the reactive powder. The immersion of reactive aggregate in Na+, K+ will give added timing which will cause the dissolution of silica content, drop of hydroxil ions and an increase in Na+, K+. However, when immersed in Li+ liquid, the reduction of hydroxyl ions will increase and dissolution of silica content will be lower. The dramatic reduction due to Li+ prove that Li+reactivon to the reactive aggregate are more direct. Its lower dissolution prevented the swelling of the material.
Regarding the Li+, Na+, K+ combination of hydrationn products, the research discover that the proportion of the hydration product are Li+> Na+> K+. The implication of this is that the quantity of the admixture should be adequate to prevent the ASR from swelling while Li composition is added. The combination of LiNO3 proportion shall be greater than LiOH.H2O.
With regards to the reactivity in the utilization of Li+ in replacing the cement hydration product combination, it is discovered that the capacity of replacement by LiNO3 is better than LiOH.H2O. In addition, the increase in Li+ concentration and the increase in the duration of immersed time will increase the replacement. This implies that the spray or immersion approach is good for correction of structure damaged by ASR. However further evaluation requires more time.
關鍵字(中) ★ 活性粒料
★ 水泥漿
★ 砂漿
★ 鹼-矽反應
★ 鋰離子
關鍵字(英) ★ mortars
★ hydroxyl ions
★ alkali-silica reaction (ASR)
★ reactive aggregate
★ cement paste
論文目次 第一章 緒論 - 1 -
1-1 研究起源與動機 - 1 -
1-2 研究目的 - 2 -
第二章 文獻回顧 - 3 -
2-1 鹼質與粒料反應之種類 - 3 -
2-1-1 鹼-氧化矽反應( ASR ) - 3 -
2-1-2 鹼-矽酸鹽反應 - 4 -
2-1-3 鹼-碳酸鹽反應( ACR ) - 5 -
2-2 影響 ASR 反應的條件 - 5 -
2-2-1 混凝土內部需含有活性粒料 - 6 -
2-2-2 混凝孔隙溶液內需含有足夠的氫氧化鹼 - 6 -
2-2-3 足夠的濕度 - 6 -
2-3 鹼質與粒料反應預防及維修方法 - 7 -
2-3-1 新拌混凝土預防方法 - 7 -
2-3-2 硬固混凝土之維修方式 - 7 -
2-4 鋰化合物抑制ASR機理 - 8 -
2-4-1 鋰化合物改變ASR產物之能力 - 8 -
2-4-2 鋰抑制矽溶出之成效 - 10 -
2-4-3 鋰減少ASR膠體微粒間的排斥力[23] - 11 -
2-5 鋰化合物抑制鹼質與粒料反應之有效用量 - 11 -
2-6 孔隙溶液和水泥水化產物對ASR的影響 - 14 -
2-7 ASR 膠體的組成成分及分析方法 - 16 -
2-7-1 鹼矽膠體組成成分 - 16 -
2-7-2 ASR膠體分析方法 - 16 -
第三章 試驗規劃 - 18 -
3-1 試驗材料 - 18 -
3-1-1 水泥 - 18 -
3-1-2粒料 - 19 -
3-1-3拌合水 - 21 -
3-1-4藥劑 - 21 -
3-2試驗規劃 - 22 -
3-3 試驗方法及設備 - 29 -
3-3-1 活性粒料的處理 - 29 -
3-3-3粒料粉體與溶液中Li+、Na+及K+間之反應行為分析方法 - 30 -
3-3-2 水泥漿及水泥砂漿試體內游離態陽離子含量分析方法 - 33 -
3-4實驗參數與符號說明 - 41 -
第四章 試驗結果與討論 - 46 -
4-1 Li+、Na+及K+與活性粒料粉體之反應行為分析 - 46 -
4-1-1 粒料粉體浸泡於鹼金屬溶液中的SiO2溶出行為 - 46 -
4-1-2 不同鹼金屬溶液與活性粒料反應行為 - 53 -
4-2 Li+、Na+及K+與水泥水化產物結合之行為分析 - 56 -
4-2-1 水泥漿試體內Li+、Na+及K+與水泥水化產物結合之行為分析 - 57 -
4-2-1-1 改變水泥含鹼當量時Na+結合於水化產物之行為 - 57 -
4-2-1-2 不同含鹼量在不同養護時間時,水化產物結合不同鹼金屬之行為 - 58 -
4-2-2 水泥砂漿試體內Li+、Na+及K+與水泥水化產物結合之行為分析 - 65 -
4-2-2-1 改變砂漿試體內水泥含鹼量對Na+結合於水泥砂漿程度影響 - 66 -
4-2-2-2 改變砂漿試體內活性粒料/水泥比對Na+結合於水泥砂漿程度影響 - 67 -
4-2-2-3 不同含鹼量在不同養護時間時,活性粒料對水化產物結合不同鹼金屬之影響 - 69 -
4-3 Li+取代結合於水泥水化產物內之Na+及K+能力分析 - 84 -
4-3-1 水泥漿粉末浸泡於鋰溶液中分析Li+取代已固結於水化產物 Na+及K+能力 - 85 -
4-3-1-1 Li+取代不同含鹼量水泥水化產物內Na+及K+之能力 - 85 -
4-3-1-2 Li+取代不同養護時間時水泥水化產物內Na+及K+能力分析 - 86 -
4-3-1-3 浸泡時間改變對Li+取代已固結於水化產物Na+及K+能力影響 - 88 -
4-3-1-4 浸泡Li溶液種類改變對Li+取代水泥水化產物內Na+及K+能力影響 - 90 -
4-3-1-5 浸泡Li+溶液濃度改變對Li+取代水泥水化產物內Na+及K+能力影響 - 93 -
4-3-2 利用水泥砂漿試體粉末浸泡於鋰化合物內分析Li+取代結合於水化產物及活性粒料內Na+、K+取代能力之影響 - 96 -
4-3-2-1 水泥砂漿試體粉浸泡不同Li濃度,分析Li+對水化產物內Na+、K+取代能力之影響 - 96 -
4-3-2-2 水泥砂漿試體粉浸泡不同Li化合物,分析Li+對水化產物內Na+、K+取代能力之影響 - 98 -
4-4 綜合討論 - 100 -
第五章 結論與建議 - 103 -
5-1結論 - 103 -
5-2建議 - 104 -
參考文獻 - 106 -
參考文獻 [1]Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, pp.59-61, 124 Feb., 1940.
[2]Michael, D.A., Thomas, B.F., Kevin, J.F., Jason, H.I., and Yadhira R., “The Use of Lithium To Prevent or Mitigate Alkali-Silica Reaction in Concrete Pavements and Structures,” FHWA-HRT-06-133, Federal Highway Administration, McLean, VA, pp. 7-10, 2007.
[3]莫祥銀、金童順、王克宇、李魁清,「石英玻璃在不同鹼性條件下的矽溶出研究」,南京師範大學學報,第3卷,第4期,第1-5頁,2003。
[4]劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,博士論文,國立中央大學土木工程研究所,中壢,2003。
[5]Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
[6]Metha, P.K., “Concrete structure, properties, and materials,” pp.145-150, 1986.
[7]Diamond, S., “A review of the alkali-aggregate reaction and expansion mechanism, alkali in cement and in concrete pore solutions,” Cement and Concrete Research, Vol. 5, pp.329-346, 1975.
[8]Poyet, S., Sellier, A., Capra, B., Foray, G. Torrentic, J. M., Cognon, H., and Bourdarot, E., “Modelling of alkali-silica reaction in concrtete, Part 2:Influence of water on ASR,” Proceeding of the 12thInternational Conference on Alkali-Aggregate Reaction, France, 2004.
[9]Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,” In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
[10]Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigationalternatives,” Research Report ICAR 301-1F, 2001.
[11]Hichard, H., Stark, D, and Diamond, S., “Alkali-silica ractivity: an overview of research,” SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
[12]Stark, D., “Lithium Salt Admixtures – An Alternative Method to Prevent Expansive Alkali-Silica Reactivity,” Proceedings of the Ninth International Conference on Alkali-Aggregate Reaction in Concrete, London, United Kingdom, July 1992.
[13]Diamond, S., and Ong, S., “The mechanisms of lithium effects on ASR,” Proceedings of the 9th International Conference on Alkali-Aggregate Reaction, London, United Kingdom, July 1992.
[14]Ramyar, K., Copuroglu, O., Andic, O., and Fraaij, A.L.A., “Comparison of Alkali-Silica Reaction Products of Fly Ash or Lithium-Salt-Bearing Mortar Under Long-Term Accelerated Curing,” Cement and Concrete Research, Vol. 34, No. 7, 2004.
[15]Mei, L.B., Lu, D., Deng, M., and Tang, M.S., “Expansion of Siliceous Aggregate in LiOH Solution,” Proceedings of the 12th International Conference on AAR in Concrete, Beijing, China, pp. 399-406, October 2004.
[16]Kawamura, M., and Fuwa, H., “Effects of Lithium Salts on ASR Gel Composition and Expansion of Mortars,” Cement and Concrete Research, Vol. 33, No. 6, pp. 913–919, June 2003.
[17]Lawrence, M., and Vivian, H.E., “The reactions of various alkalis with silica,” Australian Journal of applied science, Vol.12, pp.96-103 , 1961.
[18]Hobbs, D. W., “Deleterious Alkali-Silica Reaction in Concrete,” Thomas Telford, London, 1988.
[19]Lyndon, D.M., James, J. B., and Patrick, G.B., “The effects of lithium hydroxide solution on alkali silica reaction gels created with opal,” Cement and Concrete Research, Vol. 34, pp. 641–649, 2004.
[20]Leemann, A., and Holzer, L., “Alkali-aggregate reaction—identifying reactive silicates in complex aggregates by ESEM observation of dissolution features,” Cement and Concrete Composites, Vol. 27, pp. 796–801, 2005.
[21]盧都友、呂忆农、梅來寶、許仲梓、邓敏、唐明述,「兩類典型鹼活性岩石在鹼溶液中壓蒸的反應產物」,建築材料學報,第9卷,第1期,第10-18頁,2006。
[22]Kevin, J. F., Michael, D.A. Thomas, B.F., Kimberly, E.K., and Jason, H. I., “Interim Recommendations for the Use of Lithium to Mitigate or Prevent Alkali-Silica Reaction (ASR),” FHWA-HRT-06-073, Federal Highway Administration, McLean, VA, pp. 25-26, 2005.
[23]Flávio, A. R., Paulo J.M. Monteiro, and Garrison S., “The alkali-silica reaction The surface charge density of silica and its effect on expansive pressure,” Cement and Concrete Research, Vol. 29, pp. 527–530, 1999.
[24]Rodrigues, F.A., Monteiro, P.J.M., and Sposito, G., “The Alkali-Silica Reaction: The Effect of Monovalentand Bivalent Cations on Surface Charge Density of Opal,” Cement and Concrete Research, Vol. 31 ,pp. 1549–1552, 2001.
[25]McCoy, W.J., and Caldwell, A.G., “New approach to inhibiting alkali-aggregate expansion,” Journal of the American Concrete Institute, Vol.22, No. 9, pp. 693-706 , 1951.
[26]Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234, 1989.
[27]Stark, D., Morgan, B., Okamoto, P., and Diamond, S., Eliminating or Minimizing Alkali-Silica Reactivity, SHRP-C-343, National Research Council, Washington, DC, 1993.
[28]Stokes, D.B., Wang, H.H., and Diamond, S., “A Lithium-Based Admixture for ASR Control That Does Not Increase the Pore Solution pH,” Proceedings of the Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, SP-173, pp. 855–867 , 1997.
[29]Qinghan, B., Nishibayashi, S., Xuequan, W., Yoshino, A., Hong, Z., Tiecheng, W, and Mingshu, T., “Preliminary study of effect of LiNO2 on expansion of mortars subjected to alkali-silica reaction,” Cement and Concrete Research, Vol. 25, No. 8, pp. 1647-1654 , 1995.
[30]Lumley, J.S., “ASR Suppression by Lithium Compounds,” Cement and Concrete Research, Vol. 27, No. 2, pp. 235–44, 1997.
[31]Durand, B., “More Results About the Use of Lithium Salts and Mineral Admixtures to Inhibit ASR inConcrete,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction (ICAAR), Quebec, Canada, June 11–16, pp. 623–632, 2000.
[32]Tremblay, C., Bérubé, M.A., Fournier, B., and Thomas, M.D.A., “Performance of Lithium-Based Products Against ASR: Effect of Aggregate Type and Reactivity, and Reaction Mechanisms,” Proceedings of the Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology (Suppl. Papers), Las Vegas, NV, pp. 247–267, May 2004.
[33]Tremblay, C., Bérubé, M.A., Fournier, B., Thomas, M.D.A., Folliard, K.J., “Use of the Accelerated Mortar Bar Test to Evaluate the Effectiveness of LiNO3 Against Alkali-Silica Reaction, Part 2:Comparison With the Concrete Prism Test Results,” In preparation, to be submitted to the ASTM Journal of Testing and Evaluation, 2006.
[34]Collins, C.L., Ideker, J.H., Willis, G.S., and Kurtis, K.E., “Examination of the Effects of LiOH, LiCl, and LiNO3 on Alkali-Silica Reaction,” Cement and Concrete Research, Vol. 34, No. 8,pp. 1403–1425, 2004.
[35]Diamond, S., and Ong, S., “The mechanisms of lithium effects on ASR,”Proceeding of the 9th International Conference on Alkali-Aggregate Reaction,London, pp. 269-278 , 1992.
[36]Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture,” Cement and Concrete Research, Vol. 29, pp.1271-1275 , 1999.
[37]Thomas, M.D.A, Hooper, R., and Stokes, D, “Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792, 2000 .
[38]Feng, X., Balcom, B.J., Thomas, M.D.A., and Bremner, T.W., “Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI) ” Cement and Concrete Research, Vol. 38, pp. 1409–1415, 2008.
[39]Diamond, S.,“Chemistry and other characteristics of ASR gel,” Proceeding of the 11thInternational Conference on Alkali-Aggregate Reaction, pp. 31-pp 40, 2000.
[40]Kurt, K.E., and Monteiro, P. J. M., “Chemical additives to control expansion of alkali-silica reaction gel: proposed mechanisms of control ,” JOURNAL OF MATERIALS SCIENCE Vol. 38 , pp.2027 – 2036, 2003.
[41]Helmuth, R., Stark, D., and Diamond, S., “Alkali-Silica Reactivity:An Overview of Research,” Strategic Highway Research Program, Washington, DC, pp.11-12, 1993.
指導教授 李釗(Chau Lee) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明