摘要(英) |
When it comes to the research of investing decision, three strategies should be considered at the same time, including stock selection strategies, market timing strategies, and capital allocation strategies. However, complicated interactive relations exist among the three strategies. In the past, the three strategies were studied independently to simplify the question.
The presented study proposes a framework, Investing Strategy Portfolio, combining stock selection strategies, market timing strategies, and capital allocation strategies. The concept of the framework is based on that of traditional portfolio investing. Nevertheless, unlike traditional portfolio investing which only one market timing strategy is used to decide when to buy or sell all stocks, this framework propose a strategy of ranking procedure which can help to decide what stocks should be picked up and when they should be bought/sold at the same time. Therefore, different market timing strategies rather than a unitary market timing strategy can be used. In addition, we weigh the allocation of capital to get most profit by Combination Genetic Algorithms in search optimization.
This present framework is divided into two types, including Simple Portfolio Investing Strategy and Advanced Portfolio Investing Strategy. Moreover, we use the data from 2003 to 2005. The results of the experiments show that both simple portfolio investing strategy and advanced portfolio investing strategy have excellent performance; however, tactics of going long and going short could influence the performance since it is difficulty to decide when to go short in bull market. Another discovery is that we can eliminate some overfitting investing strategy to improve the profitability of the present framework. |
參考文獻 |
[1]王淑芬,投資學,台北:華泰書局,1991。
[2]江吉雄,遺傳演算法於股市選股與擇時策略之研究,中央大學資訊管理研究所碩士論文,2002。
[3]杜金龍,技術指標在台灣股市應用的訣竅,台北:金錢文化,1998。
[4]林耀堂,遺傳程式規劃於市場擇時交易策略之應用,中央大學資訊管理研究所碩士論文,2001。
[5]林耀暄,模糊理論和基因演算法於股市買賣點決策及資金比例配置之研究,中華大學資訊工程學系碩士論文,2001。
[6]施正宏,結合總體經濟指標及個股財務資料以預測個股漲跌─以台灣電子類股為例,中原大學資訊管理研究所碩士論文,2004。
[7]洪志豪,技術指標KD、MACD、RSI與WMS%R之操作績效實證,台灣大學國際企業學研究所碩士論文,1999。
[8]侯佳利,組合編碼遺傳演算法於投資組合及資金分配之應用,中央大學資訊管理研究所碩士論文,2001。
[9]陳共、周升業、吳曉求,證券投資分析,台北:五南圖書出版公司,2001。
[10]陳旭宏,基本分析運用於股票超額報酬之研究,大同大學事業經營研究所碩士論文,2001。
[11]陳伯仁,證券交易策略發掘,中央大學資訊管理研究所碩士論文,2002。
[12]陳建全,台灣股市技術分析之實證研究,台灣大學商學研究所碩士論文,1998。
[13]陳建福,遺傳程式與市場擇時策略之研究:臺灣股票市場的應用,政治大學經濟學研究所碩士論文,1996。
[14]陳與泳,組合式基金資金分配策略-蟻元合作系統與遺傳演算法之應用,台灣科技大學資訊管理系碩士論文,2004。
[15]陳稼興、侯佳利,「證券投資策略與驗證」,貨幣觀測與信用評等,第29期,2001年5月,134-144。
[16]陳應慶,應用技術分析指標於台灣股票市場加權指數買進時機切入之實證研究─以RSI、MACD及DIF為技術指標,佛光人文社會學院管理學研究所碩士論文,2004。
[17]張佑瑋,運用基因演算法整合技術指標以支援證券投資決策之研究,中山大學資訊管理學系碩士論文,1999。
[18]曾思博,類神經網路於股價預測與資金配置之應用,中央大學資訊管理研究所碩士論文,1999。
[19]黃國棟,回饋式類神經網路知識發掘於最適投資組合資金配置之研究,雲林科技大學資訊管理系碩士論文,2001。
[20]黃國樺,模糊專家系統在股票資金配置之應用-以台灣電子股為例,樹德科技大學資訊管理研究所碩士論文,2003。
[21]葉建佑,技術分析法則之績效研究-美國個股之實證,中興大學財務金融研究所碩士論文,2004。
[22]鄧紹勳,遺傳演算法於股市擇時策略之研究,中央大學資訊管理研究所碩士論文,1999。
[23]劉慧敏,多目標遺傳演算法於基本面選股策略之應用,中央大學資訊管理研究所碩士論文,2002。
[24]蕭郁凱,遺傳演算法與股市資金分配策略應用上之研究,中央大學資訊管理研究所碩士論文,2001。
[25]賴書芸,合併報表基本分析投資策略績效之研究,成功大學會計學系碩士論文,2001。
[26]謝德宗、俞海琴, 現代投資學,台北:華泰書局,2001。
[27]J. Abarbanell and B. Bushee, “Fundamental analysis, future earnings, and stock prices,” Journal of Accounting Research, Vol. 35, Spring 1997, pp.1-24.
[28]R.J. Bauer, Genetic Algorithms and Investment Strategies, John Wiley & Sons, 1994.
[29]R.J. Bauer, and J.R. Dahlquist, Technical Market Indicators, John Wiley & Sons, 1999.
[30]R.A. Brealey, S.C. Myers, and A.J. Marcus, Fundamentals of Corporate Finance, McGraw-Hill, 2001.
[31]E.F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of Finance, Vol. 25, 1970, pp.383-417.
[32]S. Gold, and P. Lebowitz, “Computerized Stock Screening Rules for Portfolio Selection,” Financial Service Review, Vol.8, 1999, pp.61-70.
[33]D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989.
[34]J.H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor: The University of Michigan Press, 1975.
[35]T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock Market Prediction System with Modular Neural Networks,” In Proceedings of the 1990 IJCNN International Joint Conference, 1990, Vol. 1, pp.1-6.
[36]B. Lev and S.R. Thiagarajan, “Fundamental Information Analysis,” Journal of Accounting Research, Autumn 1993.
[37]H.M. Markowitz, “Portfolio Selection,” Journal of Finance, Vol. 7, 1952.
[38]M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
[39]S. Sehgal, A. Garyhan, “Abnormal Returns Using Technical Analysis: the Indian Experience,” Finance India, Vol. XVI No.1, March 2002
[40]Sheng-Chi Chi, Hung-Pin Chen, Chun-Hao Cheng, “A forecasting approach for stock index future using grey theory and neural networks,” Neural Networks, 1999.
[41]K. Sims., “Artificial Evolution for Computer Graphics,” Computer Graphics, 25(4), July 1991, pp.319-328.
[42]S. Thawornwong, D. Enke, and C. Dagli “Neural Networks as a Decision Maker for Stock Trading: A Technical Analysis Approach,” Journal of Smart Engineering Systems Design, Vol. 5, 2003, pp.1-13.
[43]L. Vacca, “Managing options risk with genetic algorithms,” Computational Intelligence for Financial Engineering (CIFEr), March 1997, pp. 29-35. |