博碩士論文 93423015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.15.5.186
姓名 陳亮宇(Liang-Yu Chen)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 一個針對分群問題的關係基因演算法之原理與應用
(A Relational Genetic Algorithm for Partitioning Problems with Applications)
相關論文
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 類神經網路於股價波段預測及選股之應用
★ 以類神經網路提高股票單日交易策略之獲利★ 智慧型多準則決策支援研究:以交談式遺傳演算法為基礎的模型
★ 應用遺傳演算法於財務指標選股策略之探討★ 遺傳演算法於股市資金分配策略應用上之研究
★ 組合編碼遺傳演算法於投資組合及資金分配之應用★ 遺傳程式規劃於股市擇時交易策略之應用
★ 遺傳演算法於股市選股與擇時策略之研究★ 多目標遺傳演算法於基本面選股策略之應用
★ 證券交易策略發掘★ 遺傳演算法於SAP R/3 系統效能最佳化之應用
★ 動態多期資金管理策略發掘★ 擴充固定比例(CPPI)與時間不變性投資組合保險策略(TIPP)於投資組合之應用
★ 演化式賽局於投資策略之研究★ 利用遺傳演算法發掘投資組合保險之調整策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究係針對運用在分群問題上之基因演算法,提出一種以關係為導向之編碼方式,並修改傳統基因運算,以符合此編碼結構,稱為關係基因演算法(Relational Genetic Algorithm, RGA)。由等價關係延伸而來的關係編碼,其編碼為一矩陣結構,將其運用在分群問題上,可以適當描述問題結構,不會產生任何重覆性,藉此提升演算法的效能。在基因運算之設計上,RGA可不依賴問題本身的經驗法則,即可達到良好的效能。
分群問題,為一NP-hard問題,如果使用一般的線性搜尋的話,很難找出最佳解。因此需要使用「基因演算法」這種人工智慧的方法,來進行全域搜尋,以逼近最佳解。
現行運用在分群問題上的基因演算法,可分為三種:群號編碼( Group-number Encoding )、排列編碼( Permutation Encoding )以及分群基因演算法( Grouping Genetic Algorithms, GGA )。前兩種屬於比較傳統的編碼方式,由於編碼會產生高度重覆性,減低演算法的效能,因此,本研究的實驗主要以GGA為比較的對象,在不使用經驗法則( Heuristic )的情形下,實驗結果為RGA的效能顯著優於GGA。同時,在使用類似的經驗法則時,RGA仍可擊敗GGA。由此可知,RGA具有較良好的演算法結構與效能。
摘要(英) In this paper, we focus on the genetic algorithms for partitioning problems and purpose a new type of genetic algorithms called Relational Genetic Algorithm (RGA) including a new encoding called Relational Encoding and suitable genetic operators. Relational encoding is extended from equivalence relation and its structure is a matrix. It can suitably describe the structure of partitioning problems and the search space of genetic algorithms can be reduced. Therefore, this encoding can improve the efficiency of the genetic algorithm. At the same time, the operations of relational genetic algorithm does’nt have to depend on the heuristics for the specific problems.
The partitioning problems are NP-hard problems. If we use normally linear search to solve these problems, it is hard to optimize the solutions. Thus, we use artificial intelligent methods to search globally and try to find the optimal solution.
In the previous researches, there are three types of genetic algorithms for partitioning problems, and they are group-number encoding, permutation encoding, and grouping genetic algorithms (GGA). The first one and the second one belong to traditional encoding, so these encodings have high redundancy and would reduce the efficiency of the algorithms. Therefore, in this paper, our experiments are to compare our proposed algorithm, RGA, with GGA. Using random repair, the results of the experiments show that the performance of RGA is outstandingly better than that of GGA. Besides, using similar heuristics, RGA is also greater than GGA. These results prove that RGA is really a better genetic algorithm for the partitioning problems.
關鍵字(中) ★ 人工智慧技術
★ 關係編碼
★ 分群問題
★ 基因演算法
關鍵字(英) ★ Artificial intelligent techniques
★ Relational Encoding
★ partitioning problems
★ Genetic algorithm
論文目次 目 錄
摘 要 I
致 謝 III
目 錄 IV
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 3
第二章、文獻探討 5
2.1 基因演算法 5
2.2 分群問題 9
2.3 基因演算法應用在分群問題上 13
2.4 分群基因演算法 16
第三章、關係基因演算法 21
3.1關係編碼法 21
3.2 初始化 25
3.3 交配運算 25
3.4 突變運算 28
3.5 與原有方法的比較 29
第四章、實驗測試 32
4.1 實驗環境 32
4.2 實驗目的 32
4.3 實驗設計 33
4.4 實驗1-1等群問題使用隨機修復 34
4.5 實驗1-2等群問題使用經驗法則 36
4.6 實驗2-1相似群問題使用隨機修復 38
4.7 實驗2-2 相似群問題使用經驗法則 40
4.8 實驗3-1 地圖著色問題使用隨機修復 42
4.9 實驗3-2 圖形著色問題使用隨機修復 44
4.10 實驗結果分析 46
第五章、結論與未來研究 48
5.1 研究發現 48
5.2 研究貢獻 48
5.3 研究限制 49
5.4 未來研究方向 50
參考文獻 51
參考文獻 [Appel, 97] K. Appel and W. Haaken (1977). “Every map is four-colourable I: discharging”, Illinois J. Math 21, 429-490.
[Bhuyan, 90] J. Bhuyan, V. Raghavan, and V. Elayavalli (1990). “Genetic-Based Clustering.”, Technical Report 90-4-1, The Center for Advanced Computer Studies, University of Southwestern Louisiana, Lafayette, LA, March 1990.
[Brown, 05] E. C. Brown and R. T. Sumichrast (2005), “Evaluating performance advantages of grouping genetic algorithms”, Engineering Applications of Artificial Intelligence 18 , 1-12.
[Chiang, 96] W-C. Chiang and P. Kouvelis (1996), “An improved tabu search heuristic for solving facility layout design problem”. International Journal of Production Research, 34, 9, 2565-2585.
[Culberson, 96] J. Culberson and F. Luo (1996). “Exploring the k-Colorable Landscape with Iterated Greedy.” In D. Johnson and M. Trick (eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. American Mathematical Society, 245-284.
[Eiben, 98]A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert (1998), “Graph coloring with adaptive evolutionary algorithms”, J. Heuristics, vol. 4, no. 1, 25-46.
[Falkenauer, 92] E. Falkenauer (1992), “The grouping genetic algorithms—widening the scope of the GAs”. JORBEL—Belgian Journal of Operations Research, Statistics and Computer Science 33, 79-102.
[Falkenauer, 95] E. Falkenauer (1995), “Solving equal piles with the grouping genetic algorithm”, Proc. 6th Intnl. Conf. on Genetic Algorithms, ed. L. J. Eshelman, Morgan Kaufmann, San Francisco, 492-497.
[Falkenauer, 96] E. Falkenauer (1996), “A hybrid grouping genetic algorithm for bin packing”. J.Heuristics 2, 5-30.
[Falkenauer, 98] E. Falkenauer (1998), Genetic Algorithms for Grouping Problems. Wiley, New York.
[Goldberg, 89] D.E. Goldberg (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley.
[Greene, 00]W. A. Greene (2000). “Partitioning sets with genetic algorithms”. In J. Etheredge and B. Manaris (eds.), Proceedings of the Thirteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2000), 102-106. AAAI Press, Menlo Park, CA.
[Grimmet, 75] G. Grimmet and C. McDiarmid. (1975). “On Colouring Random Graphs,” Mathematical Proceedings of the Cambridge Philosophical Society 77, 313-324.
[Hartigan, 75] J. Hartigan (1975), Clustering Algorithms, John Wiley & Sons, New York.
[Hansen, 89] P. Hansen, B. Jaumard, and O. Frank. (1989), “Maximum sum-of-splits clustering.”, Journal of Classification, 6: 177-193.
[Holland, 75] J. H. Holland (1975), “Adaptation in Natural and Artificial Systems”, Ann Arbor: The University of Michigan Press.
[Johnson, 91] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. (1991). “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning”, Operations Research 39(3), 378-406.
[Jones, 91] D. R. Jones and M. A. Beltramo (1991), “Solving partitioning problems with genetic algorithms”, Proc. 4th Intnl. Conf. on Genetic Algorithms, eds. K. R. Belew and L. B. Booker,Morgan Kaufmann, San Francisco, 442-449.
[Smith, 85] D. Smith (1985), “Bin Packing with Adaptive Search,” In Proceeding of an International Conference on Genetic Algorithms and Their Application, 202-206.
[Syswerda, 89] G. Syswerda (1989), “Uniform Crossover in Genetic Algorithms”, In Proceedings of the Third International Conference on Genetic Algorithms, J. Schaffer (ed.), Morgan Kaufmann, 2-9.
指導教授 陳稼興(J. S. Chen) 審核日期 2006-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明