博碩士論文 944203014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.227.190.231
姓名 莊清焱(Ching-Yen Chuang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 歸納邏輯程式設計應用於證券交易相對關係規則之挖掘
(Predicate-based relational mining for stock trading)
相關論文
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 類神經網路於股價波段預測及選股之應用
★ 以類神經網路提高股票單日交易策略之獲利★ 智慧型多準則決策支援研究:以交談式遺傳演算法為基礎的模型
★ 應用遺傳演算法於財務指標選股策略之探討★ 遺傳演算法於股市資金分配策略應用上之研究
★ 組合編碼遺傳演算法於投資組合及資金分配之應用★ 遺傳程式規劃於股市擇時交易策略之應用
★ 遺傳演算法於股市選股與擇時策略之研究★ 多目標遺傳演算法於基本面選股策略之應用
★ 證券交易策略發掘★ 遺傳演算法於SAP R/3 系統效能最佳化之應用
★ 動態多期資金管理策略發掘★ 擴充固定比例(CPPI)與時間不變性投資組合保險策略(TIPP)於投資組合之應用
★ 演化式賽局於投資策略之研究★ 利用遺傳演算法發掘投資組合保險之調整策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究運用Muggleton 於1992年提出歸納邏輯程式設計,嘗試解決關於資料挖掘的文獻常使用數值的「絕對」比較,來處理數值型資料方面的問題,事實上使用數值的「相對」比較可以表達的情況會比使用「絕對」比較來得完整。由此可知,如果只使用「絕對」關係挖掘資料,由於背景知識不足的關係,導致學習情況其實有改善的空間。
  本研究將原來的數值比較轉換成邏輯分析,增加「相對」比較的概念,將數值的絕對比較和相對比較當作預測的背景知識,並搭配intensional概念簡化邏輯的描述,設法解決在數值比較的邏輯判斷,會有相同背景知識中item數目過多的問題。
  另外,本研究改良Quinlan於1990年提出歸納邏輯程式設計的FOIL演算法,由於證券市場屬於非結構性的模型,而使用機率性邏輯推理的方式,增加演算法的彈性,使其適合運用在類似證券市場這種沒有清楚定義資料間存在的相關性之模型上,而提出Inductive Probabilistic Programming的概念。
  本研究以學習近日內股價漲跌幅所產生的交易訊號為例,驗證學習正確率及精確率提升的程度,實驗結果證實當加入「相對」比較關係的概念,其學習正確率及精確率會顯著優於只使用「絕對」比較關係來挖掘資料的情況。
摘要(英) The present research uses the framework of Inductive Logic Programming which is proposed by Muggleton in 1992, and tries to solve the problems which often use the absolute value comparison to handle the numeric data in the previous researches relate to Data Mining. Actually, the situations which use the relative value comparison to express are more complete than to use the absolute value comparison. Due to absolute comparison causes the insufficient background knowledge, we can improve the learning effect of data mining by other suitable techniques.
  The present research is to transform the original value comparison into logic analysis and increase the concept of relative comparison. It takes the absolute value comparison and relative value comparison as background knowledge of predicate, and collocates the intensional concept to simply the logic description in order to solve that there are many items which represent the same background knowledge in the logic decision of value comparison.
  Besides, the present research refines the FOIL algorithm of Inductive Logic Programming which is proposed by Quinlan in 1990. Because the stock market is a non-structural model, it has to use probabilistic logic inference to increase the flexibility of algorithm, and let this algorithm fit to apply in the similar model which doesn’’t define the existent association between data clearly like stock market, so the present research proposes the concept of Inductive Probabilistic Programming.
  The present research takes stock market as example to learn the trading signals which are caused by the stock price raising or falling several days ago, and verify how much the learning accuracy and precision are improved. The results of experiment confirm when we add the concept of relative comparison, its learning accuracy and precision are obviously better than the situations which only use the absolute comparison.
關鍵字(中) ★ 相對關係
★ 歸納邏輯程式設計
★ 機率
★ FOIL
★ 資料挖掘
關鍵字(英) ★ data mining
★ Inductive Logic Programming
★ FOIL
★ relative comparison
★ probability
論文目次 中文摘要.............................................I
英文摘要............................................II
誌  謝...........................................III
目  錄............................................IV
圖 目 錄.............................................V
表 目 錄.............................................V
第一章、緒論.........................................1
 1.1 研究背景......................................1
 1.2 研究動機......................................2
 1.3 研究目的......................................2
 1.4 論文架構......................................4
第二章、文獻探討.....................................5
 2.1 證券投資分析..................................5
  2.1.1  效率市場假設..............................5
  2.1.2  基本分析和技術分析........................5
  2.1.3  技術分析的定義及基本假設..................6
  2.1.4  技術指標介紹..............................8
  2.1.5  使用各種技術指標的優缺點.................13
 2.2 歸納邏輯程式設計.............................14
  2.2.1  歸納邏輯程式設計緣起.....................14
  2.2.2  歸納邏輯程式設計簡介.....................15
  2.2.3  歸納邏輯程式設計演算法簡介...............16
  2.2.4  歸納邏輯程式設計FOIL演算法說明...........19
第三章、歸納邏輯程式設計應用於證券市場..............23
 3.1 邏輯分析應用於數值分析.......................23
 3.2 證券市場上的歸納邏輯程式設計.................25
 3.3 機率性的證券市場邏輯分析.....................27
 3.4 系統架構.....................................30
第四章、實驗測試....................................32
 4.1 實驗環境.....................................32
 4.2 實驗流程.....................................32
 4.3 資料來源及技術指標選擇.......................33
 4.4 實驗目的.....................................34
 4.5 實驗設計及結果分析...........................34
  4.5.1  實驗一:不同個別規則最低正確率的影響.....35
  4.5.2  實驗二:不同訓練期長度的影響.............36
  4.5.3  實驗三:分析實驗一結果及精確率...........38
  4.5.4  實驗四:加入相對比較的影響...............40
第五章、結論........................................51
 5.1 研究貢獻.....................................51
 5.2 未來研究方向.................................52
參考文獻............................................54
參考文獻 [1] 杜金龍,《技術指標在台灣股市應用的訣竅》,台北:財訊出版社,2002。
[2] 陳共、周升業、吳曉求,《證券投資分析》,台北:五南圖書出版公司,2001。
[3] 曾思博,類神經網路於股價預測與資金配置之應用,第十屆國際資訊管理學術研討會論文集,1999。
[4] Achelis, Steven B., Technical Analysis from A to Z, McGraw-Hill, New York, 2000.
[5] Bauer, Richard J. and Julie Dahlquist, Technical Market Indicators, John Wiley & Sons, 1999.
[6] Bergadano, Francesco and Daniele Gunetti, Inductive Logic Programming: From Machine Learning to Software Engineering, The MIT Press, 1995.
[7] Chi, Sheng-Chi, Hung-Pin Chen, Chun-Hao Cheng, “A forecasting approach for stock index future using grey theory and neural network,” Neural Networks, Vol. 6, 1999, pp. 3850-3855.
[8] De Raedt, Luc and Kristian Kersting, “Probabilistic Inductive Logic Programming,” Albert-Ludwigs-University, Germany, 2004.
[9] Fama, Eugene F., “Efficient Capital Market: A Review of Theory and Empirical Work,” Journal of Finance, Vol. 25, 1970, pp. 383-417.
[10] Fayyad, Usama M., Gregory Piatetsky-Shapiro, Padhraic Smyth and Ramasamy Uthurusamy, Advances in Knowledge Discovery and Data Mining, The MIT Press, 1995.
[11] Jobman, Darrell R., The Handbook of Technical Analysis, Irwin, New York, 1995.
[12] Keynes, John Maynard, The General Theory of Employment, Interest, and Money, Harcourt, New York, 1936.
[13] Lavrac, Nada and Saso Dzeroski, Inductive Logic Programming Techniques and Applications, Ellis Horwood, New York, 1994.
[14] Lavrac, Nada and Peter A. Flach, “An Extended Transformation Approach to Inductive Logic Programming,” ACM Transactions on Computational Logic, 2(4), October 2001, pp. 458-494.
[15] Muggleton, Stephen, “Inductive Logic Programming: Issues, results and the challenge of Learning Language in Logic,” Artificial Intelligence, Vol. 114, 1999, pp. 283-296.
[16] Muggleton, Stephen, “Inductive Logic Programming: derivations, successes and shortcomings,” ACM SIGART Bulletin, 5(1), January 1994, pp. 5-11.
[17] Muggleton, Stephen, “Bayesian Inductive Logic Programming,” Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, 1994.
[18] Muggleton, Stephen, Inductive Logic Programming, Academic Press, 1992.
[19] Muggleton, Stephen, “Inductive logic programming,” New Generation Computing, 8(4) 1991, pp. 295-318.
[20] Muggleton, Stephen and Ivan Bratko, “Applications of Inductive Logic Programming,” Communications of the ACM, 38(11), November 1995, pp. 65-70.
[21] Muggleton, Stephen and Luc De Raedt, “Inductive logic programming: Theory and methods,” Journal of Logic Programming, Vol. 19/20, 1994, pp. 629-679.
[22] Muggleton, Stephen and Cao Feng, “Efficient induction of logic programs,” Proceedings of the First Conference on Algorithmic Learning Theory, 1990, pp. 368-381.
[23] Nienhuys-Cheng, Shan-Hwei and Ronald de Wolf, Foundations of Inductive Logic Programming, Springer-Verlag, New York, 1997.
[24] Quinlan, J. Ross, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, 1993.
[25] Quinlan, J. Ross, “Learning logical definitions from relations,” Machine Learning, Vol. 5, 1990, pp. 239-266.
[26] Quinlan, J. Ross, Decision Trees and Multi-Valued Attributes, Oxford University Press, New York, 1988.
[27] Quinlan, J. Ross and R. Mike Cameron-Jones, “FOIL: A Midterm Report,” Basser Department Computer Science University of Sydney, Australia, 2006.
[28] Ross, Stephen A., Randolph W. Westerfield and Bradford D. Jordan, Fundamentals of Corporate Finance, McGraw-Hill, 2001.
[29] Shapiro, Ehud Y., Algorithmic Program Debugging, MIT Press, Cambridge, 1983.
[30] Thawornwong, Suraphan, David Enke and Cihan H. Dagli, “Neural Network as a Decision Marker for Stock Trading: A Technical Analysis Approach,” Journal of Smart Engineering Systems Design, Vol. 5, 2003, pp. 1-13.
指導教授 陳稼興(Jiah-Shing Chen) 審核日期 2007-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明