博碩士論文 954203045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.135.206.240
姓名 吳昀錚(Yun-Cheng Wu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 利用文字探勘技術預測台股加權指數之漲跌趨勢
(Predicting the Trend of Taiwan Weighted Stock Index with Text Mining Techniques)
相關論文
★ 信用卡盜刷防治簡訊規則製作之決策支援系統★ 不同檢索策略之效果比較
★ 知識分享過程之影響因子探討★ 兼具分享功能之檢索代理人系統建構與評估
★ 犯罪青少年電腦態度與學習自我效能之研究★ 使用AHP分析法在軟體度量議題之研究
★ 優化入侵規則庫★ 商務資訊擷取效率與品質促進之研究
★ 以分析層級程序法衡量銀行業導入企業應用整合系統(EAI)之關鍵因素★ 應用基因演算法於叢集電腦機房強迫對流裝置佈局最佳近似解之研究
★ The Development of a CASE Tool with Knowledge Management Functions★ 以PAT tree 為基礎發展之快速搜尋索引樹
★ 以複合名詞為基礎之文件概念建立方式★ 利用使用者興趣檔探討形容詞所處位置對評論分類的重要性
★ 透過半結構資訊及使用者回饋資訊以協助使用者過濾網頁文件搜尋結果★ 利用feature-opinion pair建立向量空間模型以進行使用者評論分類之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一直以來,股票價格的趨勢預測都是個令人感興趣的議題。如果投資人能夠事先得知股票價格的漲跌趨勢,那麼他們將能夠順利的從股票市場當中獲利。然而,人類的行為相當難以掌握,因此,想要準確的預測其趨勢是非常困難的。過去,在此議題的研究上,大多採用技術分析以及基本分析這兩種分析方法。但是,這兩種方法都只提供長期的股票投資策略,而忽略了由財經新聞所引起的短期股市變動。
本研究將藉由文字探勘技術去預測台灣股票市場的移動趨勢。我們發展了一個系統去針對線上的財經新聞進行分類,分類的結果將會決定我們的投資策略。最後,我們透過投資台灣股票加權指數去評估該系統的績效。
實驗結果顯示,該系統將能夠在每個月獲得大約百分之五點四的投資報酬率。此外,經過統計檢定驗證後發現,在顯著水準為0.05之下,該投資報酬率勝過銀行定存利率。由此可知,該系統所提供之策略對於短期股票投資人而言,有其參考之價值。
摘要(英) Stock price trend forecasting is an interesting topic. If investors can master stock price trend in advance, they will gain profit efficiently. However, no method can predict the trend accurately because human behavior is quite difficult to understand. In the past, many studies work on the topic by adopting fundamental and technical analysis. Nevertheless, both of the two trading analyses ignore the influence of short-term stock market movement caused by financial news, but only research into long-term forecasting.
In this paper, we aim to predict the movement of whole Taiwan stock market by utilizing text mining. We develop a system to classify on-line financial news articles. The classification results can decide our trading strategies, and then the performance of our system is evaluated by investing Taiwan Weighted Stock Index (TWSI).
The results reveal that our system can earn an average return of 5.4% per month, and additionally, the system has statistically the higher average return than the certificate of deposit (CD) rate (α = 0.05). Therefore, we argue that the trading strategies provide by our system are valuable for the short-term investors.
關鍵字(中) ★ 股票
★ 台灣股票加權指數
★ 分類
★ 文字探勘
★ 短期
關鍵字(英) ★ Text Mining
★ Classification
★ Taiwan Weighted Stock Index
★ Stock
★ Short-Term
論文目次 Contents
List of Figures ii
List of Tables iii
1.Introduction 1
2.Related Work 3
2.1.Text Mining 3
2.1.1.Preprocessing 3
2.1.2.Feature Selection 4
2.1.3.Word Weighting 6
2.1.4.Classifying 7
2.2.Stock Price Trend Forecasting with Text Mining Techniques 9
3.System Design 13
3.1.Training Phase 14
3.2.Test Phase 16
4.Experimental Design and Results 18
4.1.Experimental Design 18
4.2.Experimental Results 20
5.Conclusions and Future Directions 24
References 25
參考文獻 References
[1]B. Wuthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, J. Zhang and W. Lam, "Daily Stock Market Forecast from Textual Web Data," IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2720-2725, San Diego, CA, USA, 1998.
[2]C.-S. Lee, Y.-J. Chen and Z.-W. Jian, "Ontology-Based Fuzzy Event Extraction Agent for Chinese E-News Summarization," Expert Systems with Applications, vol. 25, no. 3, pp. 431-447, 2003.
[3]G. L. Gastineau, The Exchange-Traded Funds Manual. John Wiley & Sons, New York, NY, USA, 2002.
[4]G. Gidófalvi, "Using News Articles to Predict Stock Price Movements," Project Report, Department of Computer Science and Engineering, University of California, San Diego, 2001.
[5]H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, Norwell, MA, USA, 1998.
[6]I. Rish, "An Empirical Study of the Naive Bayes Classifier," Proceedings of IJCAI-01 Workshop on Empirical Methods in Artificial Intelligence, vol. 335, pp. 41-46, Seattle, WA, USA, 2001.
[7]J. Han and M. Kamber, Data Mining: Concepts and Technique. Morgan Kaufmann, San Francisco, CA, USA, 2006.
[8]J.-L. Tsai, G. Hsieh and W.-L. Hsu, "Auto-Generation of NVEF Knowledge in Chinese," Computational Linguistics and Chinese Language Processing, vol. 9, no. 1, pp. 41-64, 2004.
[9]K. Aas and L. Eikvil, "Text Categorisation: A Survey," Technical Report, Norwegian Computing Center, 1999.
[10]M.-A. Mittermayer, "Forecasting Intraday Stock Price Trends with Text Mining Techniques," Proceedings of the 37th Annual Hawaii International Conference on System Sciences, vol. 3, pp. 30064b, Big Island, HI, USA, 2004.
[11]M. Beechey, D. Gruen and J. Vickery, "The Efficient Market Hypothesis: A Survey," Economic Research Department, Reserve Bank of Australia Working Paper, 2000.
[12]P. A. Adler and P. Adler, The Social Dynamics of Financial Markets. JAI Press, Greenwich, CT, USA, 1984.
[13]P. Cunningham and S. J. Delany, "k-Nearest Neighbour Classifiers," Technical Report, University College Dublin, School of Computer Science and Informatics, 2007.
[14]R. P. Schumaker and H. Chen, "Textual Analysis of Stock Market Prediction Using Financial News Articles," Proceedings of the 12th Americas Conference on Information Systems, paper 185, Acapulco, Guerrero, Mexico, 2006.
[15]S.-B. Cho and H.-H. Won, "Machine Learning in DNA Microarray Analysis for Cancer Classification," Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics, vol. 19, pp. 189-198, Adelaide, SA, Australia, 2003.
[16]T.-C. Hsieh, K.-H. Tsai, C.-L. Chen, M.-C. Lee, T.-K. Chiu and T.-I. Wang, "Query-Based Ontology Approach for Semantic Search," Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2970-2975, Hong Kong, 2007.
[17]W.-Y. Ma and K.-J. Chen, "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff," Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, vol. 17, pp. 168-171, Sapporo, Hokkaido, Japan, 2003.
[18]Y. Yang and J. O. Pedersen, "A Comparative Study on Feature Selection in Text Categorization," Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412-420, Nashville, TN, USA, 1997.
[19]陳俊達,王台平,劉昭麟,「以文件分類技術預測股價趨勢」,第十九屆自然語言與語音處理研討會論文集,347-361頁,國立台灣大學,台北市,台灣,2007年。
[20]陳振南,吳毓傑,「特徵選取與權重分配於中文新聞分類之比較」,第十三屆國際資訊管理學術研討會,721-728頁,淡江大學,台北縣,台灣,2002年。
[21]鍾任明,李維平,吳澤民,「運用文字探勘於日內股價漲跌趨勢預測之研究」,中華管理評論國際學報,10(1),1-30頁,2007年。
指導教授 周世傑(Shih-Chieh Chou) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明