以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:18.117.70.64
姓名 汪翊鐙(I-Teng Wang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 CFB副產石灰掺配爐石粉製作混凝土成效研究
(lime CFB byproduct powder doped with blast furnace slag to product of concrete on the Effectiveness Research)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 高溫循環式流體化床發電鍋爐(Circulating Fluidized Bed Boiler,簡稱CFB)以燃燒石油焦來發電,同時避免燃燒後高含硫量之石油焦產生硫氧化物過量排放,故添加石灰石進行脫硫,所產生之副產物,即為CFB副產石灰。
本研究利用水泥-爐石粉膠結系統添加CFB副產石灰為激發效果之技術發展,一方面對CFB副產石灰做品質穩定性之檢驗,做為每批CFB副產石灰摻配爐石粉製作混凝土之可行性判斷依據,並建立資料庫。另外,針對添加CFB飛灰於水泥-爐石粉系統所拌製之混凝土應用,進行現場實廠試拌及現地澆注,同時觀測現地混凝土之使用成效,以及實驗室內之CFB飛灰混凝土耐久性測試,以掌握添加CFB副產石灰所製成混凝土之長期應用成效,供未來推廣副產石灰資源化之用。
研究結果得知,CFB飛灰使用於水泥-爐石粉系統中最佳用量範圍約在20%,而CFB飛灰用量超過25%時,則會造成體積過量膨脹或無法有效抑制乾縮。而在混凝土方面,副產石灰掺配爐石粉製作混凝土,會產生緩凝效應,透過調整使用藥劑,及減少拌和用水量的方式可則使凝結時間可與不添加CFB飛灰之混凝土相近,而參考強度210 kgf/cm2及280 kgf/cm2之配比,在強度方面皆能達到要求。在現地澆注部分,添加CFB飛灰之混凝土鑽心試體抗壓強度亦皆能達到參考強度之要求,現地製作試體耐久性測試結果亦優於為添加CFB飛灰之配比,顯示CFB飛灰為極具潛力之資源化副產品。
摘要(英) Petroleum coke combustion occurs inside the body of Circulating Fluidized Bed Boiler, referred to as CFB, in order to generate power. To avoid excess emissions of sulfur oxides from the high post-combustion sulfur content of petroleum coke, limestone is added, generating a by-products, namely, lime CFB byproduct.
In this study, the development in the utilization of fly ash from lime CFB byproduct as cement is researched. The quality as cementing materials from lime CFB byproducts were evaluated for various batch. Feasibility of using lime CFB byproducts were then assessed and a database established. In addition, lime CFB cement was used for concrete application. Different mixes were produced and laboratory tests on the durability of concrete made with CFB fly ash were conducted to evaluate the long-term effectiveness of using concrete made from lime CFB byproducts and to evaluate future promotion in the utilization of resources from lime by-products.
Research results show that, CFB fly ash were best used in cement when the fly ash content was about 20%. The use of CFB fly ash by amount of more than 25% will cause excessive volume expansion or uncontrolled shrinkage. In concrete, the use of lime flyash by-product would cause retardation effect during the production of concrete. By adjusting admixtures and reducing the mixing water, the setting time is extended. In comparison to concretes made with non-CFB fly ash with a reference strength intensity of 210 kgf/cm2, the strength of 280 kgf/cm2 produced is able to meet the requirement. The addition of CFB fly ash has met the requirements of compressive strength of the reference concrete. Durability test results have shown that the addition of CFB is better than that of ordinary fly ash, indicating CFB fly ash great potential use as a by-product resources for concrete production.
關鍵字(中) ★ CFB副產石灰
★ 抗壓強度
★ 凝結時間關鍵字(英) ★ CFB byproduct lime
★ setting time
★ compressive strength論文目次 第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究內容 2
第二章 文獻回顧 4
2.1 流體化床鍋爐床技術 4
2.1.1 循環式流體化床鍋爐原理 4
2.1.2 CFB副產石灰種類 6
2.1.3 流體化床燃燒脫硫 6
2.2石膏的水化機理 9
2.3石膏與凝結時間之關係 11
2.4 副產石灰(CFB ash)反應機理 12
2.5 影響副產石灰反應之因素 13
2.5.1 f-CaO及SO3的影響 13
2.5.2 細度對副產石灰(CFB ash)的影響 15
2.5.3 無水石膏使用量影響 16
2.6常見水化產物之種類及特性 18
2.6.1 C-S-H膠體 18
2.6.2 氫氧化鈣(CH) 19
2.6.3 鈣礬石(AFt) 20
2.6.4 單硫型鋁酸鈣(AFm) 20
2.7卜作嵐材料及其影響 21
2.8 CFB飛灰運用於混凝土 21
2.9 CFB副產石灰化性檢驗 22
第三章 實驗材料與方法 25
3.1 試驗材料 25
3.2 試驗設備 28
3.3試驗內容及方法 33
3.3.1 試驗流程 33
3.3.2 試驗方法 37
第四章 CFB飛灰基本性質與耐久性 41
4.1 物理性質 41
4.1.1. CFB飛灰外觀 41
4.1.2 比重與細度 43
4.1.3 強度活性指數 44
4.2 化學成份分析 44
4-3. CFB飛灰強度品質檢驗 46
4.3.1 決定拌合用水量 46
4.3.2 水泥砂漿強度配比試驗 46
4.3.3 抗壓標準強度之建立 47
4.4 現地混凝土試拌規劃及執行情形 49
4.4.1 實驗室之配合設計試驗 50
4.4.2 抗壓強度 51
4.4.3 實廠試拌成效 56
4.5 .體積穩定性試驗 66
4.5.1. 乾燥收縮試驗 67
4.5.2. 抗硫酸鹽侵蝕試驗 69
4.5.3. SO3含量效應檢驗 74
4.5.4 混凝土之耐久性試驗 78
第五章 凝結時間改善策略 81
5.1 CFB飛灰混凝土凝結情形 81
5.2 藥劑對凝結時間之影響 84
5.3 CFB劑量對水泥漿凝結時間之影響 86
5.4 凝結時間改善 88
5.5 改變水膠比與藥劑性質 90
第六章 結論與建議 94
6.1 結論 94
6.2 建議 95
參考文獻 96
參考文獻 1.中國國家標準CNS 10896,「卜特蘭水泥混凝土用CFB飛灰或天然卜作嵐礦物攙料之取樣及檢驗法」,中國國家標準(2003)。
2.田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第十七卷,第六期,第49-53頁(2003)。
3.沈永年、王和源、林仁益、郭文田,「混凝土技術」,全華科技圖書股份有限公司,台北市(2004)。
4.常正之,「混凝土施工」,科技圖書股份有限公司,台北市(2001)。
5.林平全,「CFB飛灰混凝土」,科技圖書股份有限公司,台北市(1995)。
6.翁和德,「循環式流體化床鍋爐技術」,化工技術學刊,第六卷,第九期,第180-193頁(1998)。
7.黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)。
8.馮俊達、沈幼庭,「鍋爐原理及計算」,第二版,科學出版社,北京(1992)。
9.錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第三十一卷,第四期,第506-510頁(2006)。
10.王昱智,「CFB副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大學土木研究所碩士學位論文 (2008)。
11.ASTM C1038 (1995), “Standard Test Method for Expansion of Portland Cement Mortar Bars Stored in Water,” ASTM Designation.
12.ASTM C471 (1996), “Standard Test Methods for Chemical Analysis of Gypsum and Gypsum Products,” ASTM Designation.
13.ASTM C227 (1997), “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” ASTM Designation.
14.ASTM C596 (2000), “Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement,” ASTM Designation.
15.AASHTO T265-93 (2004), “Laboratory Determination of Moisture of Soils,” AASHTO Designation.
Conn, R. E., Sellakumar, K., and Bland, A.E. (1999), “ Utilization of CFB Fly Ash for Construction 16.Applications,” Proceedings of the 15th International Conference on Fluidized Bed Combustion, Paper No. FBC9-FBC99-0144, Savannah, Ga.
17.Chugh, Y.P., Patwardhan, A., and Kumar, S. (2007), “Demonstration of CFB ash as a cement substitute in concrete pier foundations for a Photo-Voltaic power system at SIUC,”2007 World of Coal Ash (WOCA), Covington, Kentucky, U.S.A.
18.Iribarne, J., Iribarne, A., Blondin, J. and Anthony, E.J. (2001), “Hydration of combustion ashes- a chemical and physical study,” Fuel, 80,773-784.
19.Jackson, N.M., Mack, R., Schultz, S. and Malek, M.(2007), “Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash,”World of Coal Ash (WOCA), 7-10.
20.Jazairi, B. E. and Illston, J. M. (1980), “The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry,” Cement and Concrete Research, 10, 361-366.
21.Li, D., Zhong F.,Guo, Q. and Lu, J. (2007), “Properties of flash hydrated and agglomerated particles of CFB fly ashes,” Fuel, 88, 215-220.
22.Poon, C.S., Kou, S.C. and Lin, Z.S. (2001), “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),” Cement and Concrete Research 31, 873-881.
23.Sheng, G., Li,Q., Zhai, J., and Li, F. (2007), “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, 37, 871-876.
24.Sievert, T.,Wolter, A., and Singh, N.B. (2005),“ Hydration of anhydrite of gypsum(CaSO4.Ⅱ) in a ball mill,” Cement and Concrete Research, 35, 623-630.
25.Wang, J.,Wu, Y., and Anthony, E.J. (2005), “ The hydration behavior of partially sulfated fluidized bed combustor sorbent,” Ind. Eng. Chem. Res., 44, 8199-8204.
26.Yan, P., and You, Y. (1998), “ Studies on the binder of fly ash- fluorgypsum -cement,” Cement and Concrete Research, 28(1), 135-140.
27.Young, J. F., Mindess, S. and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2009-7-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare