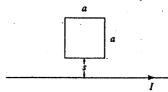

國立中央大學九十三學年度碩士班研究生入學試題卷 共上頁 第一頁


所別:大氣物理研究所碩士班 不分組科目: 電磁學

1. (20%) Consider a solid conducting sphere of radius a inside a concentric conducting spherical shell, as shown in the figure. The shell has an inner radius b and an outer radius c. A charge of q coulombs is placed on the inner solid conductor, and a charge of -q' is on the outer conductor. They are uniformly distributed on the spherical surfaces.

Find electric field E in all regions.

- 2. (20%) A square loop of wire (side a) lies on a table, a distance s from a very long straight wire, which carries a current I, as shown in the figure.
 - (a) Find the flux of B through the loop.
 - (b) If someone now pulls the loop directly away from the wire, at speed ν , what emf is generated? In what direction (clockwise or counterclockwise) does the current flow?
 - (c) What if the loop is pulled to right at speed ν , instead of away?

- 3. (20%) Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting sphere of radius R. At the center of each cavity a point charge is placed—call these charge q_a and q_b .
 - (a) Find the surface charges σ_a , σ_b , and σ_k .
 - (b) What is the field outside the conductor?
 - (c) What is the field within each cavity?
 - (d) What is the force on q_a and q_b ?

- 4. (20%) A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b, by linear dielectric material of permittivity ε . Find the potential at the center (relative to infinity)
- 5. (20%) Explaining (1) the Maxwell's equations (2) Poynting theorem.

