國立中央大學九十一學年度碩士班研究生入學試題卷

1. Solve the following ordinary differential equations:

a)
$$(3y^2 - x^2)dx = 2xydy$$
, (10%)

b)
$$\begin{cases} 2\frac{dx}{dt} - 3x + y = 4e^{t}, \\ x + 2\frac{dy}{dt} - 3y = 0. \end{cases}$$
 (10%)

2. The position vector of a moving particle is

$$r = a \cos \omega t + b \sin \omega t$$
.

where f is time, a,b, are constant vectors, ω is a constant.

a) Find the velocity dr/dt, (5%)

Show that the curve traced out lies in a plane, what is the normal vector of this plane.

c) Show that the acceleration is directed toward the origin and is proportional to $|\mathbf{r}|$. (5%)

Evaluate the following integrals

$$a) \qquad \int_0^\infty e^{-x^2} dx \ . \tag{6\%}$$

b)
$$\int_{0}^{2\pi} \frac{dx}{1+\sin^{2}x}$$
 (12%)

4.

a) Find the Fourier series for the function

$$f(x) = x^2, -\pi \le x \le \pi$$
 (10%)

b) Sketch the graphs of $f(x) = x^2$ and the fourier series in (a) over the interval $(-3\pi, 3\pi)$.

c) Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
. (5%)

5.

a) If f(P,V,T)=0, determine expressions for each of the following and express each result as function of $\frac{\partial f}{\partial T}$, $\frac{\partial f}{\partial V}$, and $\frac{\partial f}{\partial P}$:

(i)
$$\left(\frac{\partial V}{\partial T}\right)_{P}$$
, (ii) $\left(\frac{\partial P}{\partial V}\right)_{T}$, (iii) $\left(\frac{\partial P}{\partial T}\right)_{U}$. (5%)

b) Show that
$$\left(\frac{\partial P}{\partial T}\right)_{tr} = -\left(\frac{\partial V}{\partial T}\right)_{tr} \left(\frac{\partial P}{\partial V}\right)_{tr}$$
 (4%)

6.

a) Find the general solution of wave equation
$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}$$
. (7%)

b) Find the specific solution of wave equation which satisfies the so-alled Cauchy conditions:

$$\varphi(x,0) = F(x), \quad \left\lfloor \frac{\partial \varphi(x,t)}{\partial t} \right\rfloor_{t=0} = G(x).$$
(8%)

