國立中央大學96學年度碩士班考試入學試題卷 共 1 頁 第 1 頁

所別:太空科學研究所碩士班 一般生 科目:近代物理

- 1. In the rest frame of an observer receives light from a light source which is moving with a constant velocity \vec{v} . The angle between the vector \vec{v} and the line connecting the light source and the observer is θ at the time the light is emitted. If there is no the Doppler effect of the light be observed, what is the angle θ in terms of the speed of \vec{v} ? (10%)
- 2. In laboratory frame, a particle of rest mass M and four-momentum P decays into two particles of rest masses m_1 and m_2 .
 - (a) Find the total energy E_1 of the first particle of mass m_1 in terms of M, m_1 , and m_2 in the rest frame of the decaying particle M. (10%)
 - (b) Find the kinetic energy T_1 of the first particle of mass m_1 in terms of M, m_1 , and m_2 in the rest frame of the decaying particle M. (10%)
 - (c) For a special case of the second particle $m_2 = 0$, find the total energy E_2 and the kinetic energy T_2 of the second particle in the same frame. (5%)

3.

- (a) What are the properties of thermal radiation? (5%)
- (b) What is the difference between thermal radiation and blackbody radiation? (5%)
- (c) What are the properties of the spectrum of blackbody radiation that we don't understand based on the theories of the classical thermodynamics and the classical electromagnetism? (5%)
- 4. A radar system is used for ionosphere measurements at pulses of $3 \times 10^7 \, Hz$.
 - (a) What is the minimum uncertain momentum of measurements? (5%)
 - (b) What is the minimum uncertain frequency of measurements? (5%)
- 5. Assume five identical particles of mass m confined in a cubic box of volume V. The particles are free moving within the perfectly rigid and elastic walls of the box.
 - (a) If the identical particles are fermions with spin 1/2.

 Calculate the energy of the box in the ground state. (10%)
 - (b) If the identical particles are bosons with spin 0.

 Calculate the energy of the box in the first excited state. (10%)
 - (c) Compare the pressure in (a) with the pressure in (b). (5%)
- 6. The state of wave function of a hydrogen atom is in spherical coordinates (r, θ, ϕ)

$$\Psi(r,\theta,\phi) = \frac{1}{8\sqrt{\pi}(a_0)^{3/2}} \frac{r}{a_0} e^{-r/(2a_0)} (\sin\theta) (e^{-i\phi})$$
, where a_0 is the Bohr radius.

- (a) Find the quantum numbers that label the state of the hydrogen. (10%)
- (b) Find the angular momentum of the electron in the hydrogen atom. (5%)

Note that the useful equations and constants are:

$$\nabla^2 f(r,\theta,\phi) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial f}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial f}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Planck's constant
$$h = 6.626 \times 10^{-34} J \cdot s$$
, and $\frac{hc}{e} = 1240 eV \cdot nm$