## 國立中央大學九十三學年度碩士班研究生入學試題卷 共二頁 第二頁

所別:太空科學研究所碩士班 科目:流體力學

1. Explain the following terms:

(20%)

- (a) potential flow.
- (b) Joukowski theorem.
- (c) streamline, path line and streak line.
- (d) Kelvin's circulation theorem.
- (e) Reynolds number.
- 2. (a) What does an ideal fluid mean?

(4%)

- (b) Write down the governing equation for an ideal fluid and explain the physical meaning of each equation. (10%)
- 3. An infinite cylinder (radius is R) moving perpendicular to its axis in an incompressible ideal fluid (speed is  $V_0$ ). Determine the velocity of potential flow past this cylinder. (20%)
- 4. Suppose that a semi-infinite region of stationary Newtonian viscous fluid is bounded by a rigid plane (at y=0, say) which is suddenly given a velocity  $V_0$  in its own plane and thereafter maintained at that speed. Drive the velocity distribution V(y,t). (20%)
- 5. (a) Write down the equations of motion for two dimensional laminar boundary layer.
  (8%)
  - (b) Show that the thickness ( $\delta$ ) of the boundary layer diminishes with increasing Reynolds number (R) as  $\frac{1}{\sqrt{R}}$ . (ie.  $\delta \propto \frac{1}{\sqrt{R}}$ )

(9%)

(c) Show that the thickness ( $\delta$ ) of the boundary layer in the flow along a plate increases as the square root of the distance (x) from the edge. (ie.  $\delta \propto \sqrt{x}$ )

(9%)

