國立中央大學九十一學年度碩士班研究生入學試顯券

所別: 太空科學研究所 不分組 科目: 水文科學研究所 不分組

電磁學

共 /_異 第 / 頁

1.

Short questions and problems.

(25%)

- (a) Derive/write all six formulas interrelating between ρ , E and V.
- (b) Write Poisson's and Laplace's equations; state the relationship between the two equations and the method of relaxation.
- (c) Give the electrostatic and magnetostatic boundary conditions. Give the electrostatic boundary conditions at a conductor-free space interface.
- (d) Write the differential form of Maxwell's equations.
- (e) Write/state the point form for Ohm's law.
- (f) Write the continuity equation.
- (g) Express Lorentz's force equation.
- (h) State plasma frequency.
- (i) State Doppler effect.
- (j) State wave guides, TE, TM, and Give an application in practice.

2. (20%)

The earth is surrounded by an ionized shell, or ionosphere. Assuming the ionosphere is equivalent to a conducting shell at a height of h km. Let the earth radius be R_E and total charge deposited on the earth be Q. Find (a) the electric filed intensity and flux density at $0 < r < R_E$ and $R_E \le r \le R_E + h$. (b) Evaluate capacitance and (c) the energy of the earth-ionosphere combination. (d) Calculate the minimum value of the electric field intensity causing the space-to ground discharge.

<u>3</u>. (15%)

The vector potential of the Earth is expressed as

$$A_{\rm dip}(r) = \frac{\mu \theta}{4\pi} \frac{m \sin \theta}{r^2} \phi$$

(a) Find the magnetic filed B and, and (b) derive the magnetic filed line equation.

4. (20%)

An a-c voltage of amplitude V_0 and angular frequency ω , $v_C = V_0 \cos \omega t$, is connected across a parallel-plate capacitor with an area A, plate separation, d, and a dielectric medium of permittivity ϵ . (a) Calculate the displacement current density. (b) Integrate it to get the total displacement current. (c) Find the magnetic filed intensity B at a distance r from the center axis of the capacitor. Evaluate the electric and magnetic energy within a distance b from the center axis of the capacitor.

5. (20%)

A frequency 10 MHz radiowave is vertically transmitted into the ionosphere by an isolated Hertzian dipole. (a) If the dipole is made of a metal wire of radius a, length d and conductivity σ , find its radiation efficiency. (b) Write the source free wave equations for E and H in free space and the ionosphere. What's the major difference between the two? (c) Evaluate the forces of a free electron in the ionosphere applied by the E-and B-field of the radiowave.

