國立中央大學八十五學年度碩士班研究生入學試題卷

所別:太空科學研究所 不分組 科目:太空物理及電雕層物理 共2頁第/頁

- A. 太空物理 簡答題(每題5分)
- 1. 試述太空物理研究的 (a) 空間範圍爲何? (b) 介質的物理特性爲何?
- 2. 試分別就形成激震波 (Shock Wave) 之氣體的 (a) 壓縮性 (b) 上、下游速度變化與特性 (c) 上、下游溫度變化 (d) 上、下游亂度 (entropy) 變化,來說明激震波的一般物理特性。
- 3. 什麼是 the first adiabatic invarient ? 什麼條件下 the first adiabatic invarient 才成立?
- 4. 什麼是太陽風 (Solar Wind) ? 較快速的太陽風來自太陽表面的那一區域 ? 試述該區域的物理特性。
- B. 太空物理 證明、計算、繪圖題(每題10分)
- 1. Using Maxwell's equations and the Ohm's Law in magnetohydrodynamic limit (i.e., $\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0$), show that MHD (magnetohydrodynamic) plasma satisfies the frozen-in-flux condition, i.e.,

$$\frac{d\Phi_B}{dt} = \frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{a} = 0$$

where E, B, V, and c are the electric field, magnetic field, plasma flow velocity, and speed of light, respectively. The Ohm's Law is written in Gaussian units.

- 2. (a) Consider a nonuniform magnetized plasma with a large density gradient at x=0, i.e., plasma density is lower at x < 0, but higher at x > 0. If the background magnetic field is along the z-direction, please qualitatively determine the direction of electric current at x = 0.
 - (b) Apply your result to determine the electric current direction at dayside magnetopause, nightside magnetopause, plasma sheet boundary layer, and at plasmapause.
- 3. 簡單繪出子午面上地球磁層的結構,並標明
 - 1. 艏 震 波 (bow shock)
 - 2. 磁 鞘 (magnetosheath)
 - 3. 磁 層 頂 (magnetopause) (以虛線表示之)
 - 4. 電 漿 蓬 (plasma mantle)
 - 5. 磁 尾 腔 (magnetotail lobe)
 - 6. 電 漿 片 (plasma sheet)
 - 7. 電景片達界層 (plasma sheet boundary layer)
 - 8. 柽 尖 區 (polar cusp)
 - 9. 電 景 看 (plasmasphere)
 - 10. 電 景 層 頂 (plasmapause)

國立中央大学八十五学牛度碩士班研究生入学試題卷

所別:太空科學研究所 不分組 科目:太空物理及電離層物理 共2頁第2頁

C. Please state the following terminology

(20%)

- (i) Chapman theory
- (ii) diffusive equilibrium
- (iii) transition level
- (iv) deviate and non-deviate absorptions
- (v) ionospheric slab thickness
- (vi) true height analysis
- (vii) TEC (the Doppler Shift technique)
- (viii) PCA
- (ix) ionospheric conductivities σ_0 , σ_p , and σ_c
- (x) equatorial anomaly
- **D.** (i) Use an equation to express the rate of change electron concentration in the ionosphere and derive the relationship between plasma frequency f_N and zenith angle χ in the α and β -type Chapman layers during photochemical equilibrium.
 - (ii) The total solar eclipse path on October 24, 1995 was near the geomagnetic equator and the maximum occurring at Taiwan was 75% and around the midday, what kind of responses could be observed in the ionospheric E, F1, and F2 regions at Chung-Li? and why?

(15%)

E. The Appleton formula can be expressed as

$$n^{2} = 1 - \frac{X}{1 - iZ - \frac{Y_{T}^{2}}{2(1 - X - iZ)} \pm \left[\frac{Y_{T}^{4}}{4(1 - X - iZ)^{2}} + Y_{L}^{2}\right]^{1/2}}$$

In the collisionless ionosphere, (i) please derive the relationship between X and Y for the reflection condition of vertical sounding; (ii) for the geomagnetic filed 0.5 gauss and a sounding frequency 4 MHz with an incident angle 30°, please calculate the refractive index and electron concentration at reflection point of the O-wave.