央大學八十九學年度碩士班研究生入 科鬥: 有機與無機化學 共 → 頁 第 / ## 簡答題 (5% for each) - 1. When 1-butene react with HBr, either the Markovnikov or the anti-Markovnikov product can be the major product depending on the reaction conditions. What are the conditions that will lead to these two different products. - 2. Do you agree with the following statement? "Strongly electron-withdrawing substituents on benzene rings are meta directing because they deactivate the meta positions less than they deactivate the orthoand para positions." Explain your answer. - 3. Alkanoyl halides, amides, esters, and anhydrides are four common derivatives of carboxylic acids, and have different reactivities. Rank them in order of decreasing reactivities toward nucleophilic addition-elimination reactions and explain your answer. - 4. In a S_{N} 2 reaction, the statement: "a stronger base is usually a better nucleophile than a weaker base" is not always true. Give a pair of nucleophiles, in which the weaker base is a better nucleophile than the stronger one. - Give an example for the Wittig reaction by using benzyl bromide as one of the substrates. - 6. Give an example for the little Diels-Alder reaction by using anthracene as one of the substrates. - Explain why phenol has a lower pKa than ethanol. - 8. Draw the structure of cis-1-tert-butyi-4-methylcyclohexane. (make sure your bond agles are making sense) - 9. The major product of the acid-catalyzed dehydration of α -terpineol (compound A) is α -terpinene (compound B). Propose a reasonable mechanism for the transformation. - 10. In NMR experiments, deuterated solvents such as CDCl₃ are generally used. (a) What is the function of deuterated solvent? In addition, Manoalide (compound C) was isolated from a sponge in 1977. (b) Which carbon in Manoalide will give the largest chemical shift in its ¹³C NMR spectrum? (draw the structure in your answer sheet first and then mark it) $$H_3C$$ CH_3 CH_3 H_0 H_0 CH_3 H_0 H_0 H_0 ## 央大學八十九學年度碩士班研究生入學試題卷 化學學系 不分組 科鬥; 有機與無機化學 共 2頁 第2頁 - 11. Determine the point groups of the following orbitals, including the signs on the orbital lobes: (a) d_{XY} (b) $d_{X^2-Y^2}$ (c) d_{Z^2} (9 %) - 12. Except in cases where ligand geometry requires it, square-planar geometry occurs in d7, d8, and d9 ions with strong field, π-acceptor ligands. Explain why these restrictions apply. (9 %) - 13. The azide ion, N₃⁻, is linear, with equal N-N bond distances, (8 %) - (a) Describe the π- molecular orbitals of azide. - (b) Describe, in HOMO-LUMO terms, the reaction between azide and H^+ , to form hydrazoic acid, HN_3 . - 14. When cis -OsO₂F₄ is dissolved in SbF₅, a cation X* is formed. The ¹⁹F-NMR spectrum of this cation showed two resonances, a double and a triplet having relative intensities of 2 : 1. What is the most likely structure of this ion X*? What is its point group ? (8 %) - 15. B_2O_3 is acidic, Al_2O_3 is amphoteric, and So_2O_3 is basic. Why? (8 %) - 16. The high-spin d⁴ complex [Cr(H₂O)₆]²⁺ is labile, but the low-spin d⁴ complex [Cr(CN)₆]⁴⁻ is inert. Explain. (8 %)